![浙江省杭州市9+1高中联盟2023年数学高二第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/0946424c13bf48b7a2d2c31631857951/0946424c13bf48b7a2d2c316318579511.gif)
![浙江省杭州市9+1高中联盟2023年数学高二第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/0946424c13bf48b7a2d2c31631857951/0946424c13bf48b7a2d2c316318579512.gif)
![浙江省杭州市9+1高中联盟2023年数学高二第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/0946424c13bf48b7a2d2c31631857951/0946424c13bf48b7a2d2c316318579513.gif)
![浙江省杭州市9+1高中联盟2023年数学高二第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/0946424c13bf48b7a2d2c31631857951/0946424c13bf48b7a2d2c316318579514.gif)
![浙江省杭州市9+1高中联盟2023年数学高二第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/0946424c13bf48b7a2d2c31631857951/0946424c13bf48b7a2d2c316318579515.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是偶函数,又在区间上单调递增的是()A. B. C. D.2.已知抛物线y2=8x的焦点和双曲线A.3 B.3 C.5 D.53.如果,那么的值是()A. B. C. D.4.已知随机变量服从二项分布,若,,则,分别等于()A., B., C., D.,5.有位男生,位女生和位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是()A. B. C. D.6.已知函数,则的大致图像是()A. B. C. D.7.已知为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.椭圆与直线相交于两点,过中点与坐标原点连线斜率为,则()A. B. C.1 D.29.某教师有相同的语文参考书本,相同的数学参考书本,从中取出本赠送给位学生,每位学生本,则不同的赠送方法共有()A.种 B.种 C.种 D.种10.已知函数,且,则不等式的解集为A. B. C. D.11.在等差数列中,,,则公差()A.-1 B.0 C.1 D.212.若复数()不是纯虚数,则()A. B. C. D.且二、填空题:本题共4小题,每小题5分,共20分。13.设a、b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a、b中至少有一个数大于1”的条件是:_____14.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.15.命题的否定是__________.16.函数的极值点为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某小组有7个同学,其中4个同学从来没有参加过天文研究性学习活动,3个同学曾经参加过天文研究性学习活动.(1)现从该小组中随机选2个同学参加天文研究性学习活动,求恰好选到1个曾经参加过天文研究性学习活动的同学的概率;(2)若从该小组随机选2个同学参加天文研究性学习活动,则活动结束后,该小组有参加过天文研究性学习活动的同学个数是一个随机变量,求随机变量的分布列和数学期望.18.(12分)甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区一模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:(1)计算,的值;(2)若规定考试成绩在为优秀,请根据样本估计乙校数学成绩的优秀率;(3)若规定考试成绩在内为优秀,由以上统计数据填写下面列联表,若按是否优秀来判断,是否有的把握认为两个学校的数学成绩有差异.附:,.19.(12分)已知函数.(1)求函数的单调区间;(2)若函数在上是减函数,求实数的最小值;(3)若,使成立,求实数的取值范围.20.(12分)在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.21.(12分)设点为坐标原点,椭圆:的右顶点为,上顶点为,过点且斜率为的直线与直线相交于点,且.(1)求椭圆的离心率;(2)是圆:的一条直径,若椭圆经过,两点,求椭圆的方程.22.(10分)已知定义域为的函数,是奇函数.(1)求,的值;(2)若对任意的,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据函数奇偶性和单调性的定义和性质,对选项中的函数逐一验证判断即可.详解:四个选项中的函数都是偶函数,在上三个函数在上都递减,不符合题意,在上递增的只有,而故选D.点睛:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质,意在考查综合应用所学知识解决问题的能力.2、A【解析】
先求出抛物线的焦点坐标,进而可得到双曲线的右焦点坐标,然后利用m=a2【详解】由题意,抛物线的焦点坐标为2,0,则双曲线的右焦点为2,0,则m=22【点睛】本题考查了抛物线、双曲线的焦点坐标的求法,考查了学生的计算能力,属于基础题.3、D【解析】
由诱导公式,可求得的值,再根据诱导公式化简即可.【详解】根据诱导公式,所以而所以选D【点睛】本题考查了诱导公式在三角函数式化简中的应用,属于基础题.4、C【解析】分析:直接利用二项分布的期望与方差列出方程求解即可.详解:随机变量服从二项分布,若,,
可得故选:C.点睛:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.5、D【解析】先排与老师相邻的:,再排剩下的:,所以共有种排法种数,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.6、C【解析】
利用函数值的正负及在单调递减,选出正确答案.【详解】因为,排除A,D;,在同一个坐标系考查函数与的图象,可得,在恒成立,所以在恒成立,所以在单调递减排除B,故选C.【点睛】根据解析式选函数的图象是高考的常考题型,求解此类问题没有固定的套路,就是要利用数形结合思想,从数到形、从形到数,充分提取有用的信息.7、A【解析】
根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【详解】①当时,满足,但不成立,即必要性不成立,②若,则,即,即故,成立,即充分性成立,综上所述,“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了判断必要不充分条件,解题关键是掌握判断充分条件和必要条件的方法,考查了分析能力和计算能力,属于基础题.8、A【解析】试题分析:设,可得,,由的中点为,可得,由在椭圆上,可得,两式相减可得,整理得,故选A.考点:椭圆的几何性质.【方法点晴】本题主要考查了直线与椭圆相交的位置关系,其中解答中涉及到椭圆的标准方程及其简单的几何性质的应用,当与弦的斜率及中点有关时,可以利用“点差法”,同时此类问题注意直线方程与圆锥曲线方程联立,运用判别式与韦达定理解决是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.9、B【解析】若本中有本语文和本数学参考,则有种方法,若本中有本语文和本参考,则有种方法,若本中有语文和本参考,则有种方法,若本都是数学参考书,则有一种方法,所以不同的赠送方法共有有,故选B.10、C【解析】
由,可分别考虑分段函数的每一段取值为的情况,即可求解出的值;然后再分别利用每一段函数去考虑的情况.【详解】函数,可知时,,所以,可得解得.不等式即不等式,可得:或,解得:或,即故选:C.【点睛】利用分段函数求解参数取值时,需要对分段函数的每一段都进行考虑;并且在考虑每一段分段函数的时候,注意定义域.11、C【解析】
全部用表示,联立方程组,解出【详解】【点睛】本题考查等差数列的基本量计算,属于基础题。12、A【解析】
先解出复数()是纯虚数时的值,即可得出答案.【详解】若复数()是纯虚数,根据纯虚数的定义有:,则复数()不是纯虚数,故选A【点睛】本题考查虚数的分类,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、③【解析】试题分析:若a=,b=,则a+b>1,但a<1,b<1,故①推不出;若a=b=1,则a+b=2,故②推不出;若a=-2,b=-3,则a2+b2>2,故④推不出;若a=-2,b=-3,则ab>1,故⑤推不出;对于③,即a+b>2,则a,b中至少有一个大于1,反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.[来源:Z§考点:不等式性质14、.【解析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.15、【解析】分析:特称命题的否定是全称命题,即的否定为.详解:因为特称命题的否定是全称命题,所以命题的否定是.点睛:对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.的否定为,的否定为.16、1【解析】
求出导函数,并求出导函数的零点,研究零点两侧的符号,由此可得.【详解】,由得,函数定义域是,当时,,当时,.∴是函数的极小值点.故答案为1.【点睛】本题考查函数的极值,一般我们可先,然后求出的零点,再研究零点两侧的正负,从而可确定是极大值点还是极小值点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)分布列见解析,【解析】
(1)恰好选到1个曾经参加过数学研究性学习活动的同学为事件,则,计算得到答案、(2)随机变量,计算,,,得到分布列,计算数学期望得到答案.【详解】(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件,则其概率为.(2)随机变量,,,.∴随机变量的分布列为234∴.【点睛】本题考查概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.18、(1),;(2);(3)有95﹪的把握认为两个学校数学成绩有差异【解析】
(1)由分层抽样的知识及题中所给数据分别计算出甲校与乙校抽取的人数,可得,的值;(2)计算样本的优秀率,可得乙校的优秀率;(3)补全列联表,计算出的值,对照临界表可得答案.【详解】解:(1)由题意知,甲校抽取人,则,乙校抽取人,则.(2)由题意知,乙校优秀率为.(3)填表如下表(1).甲校乙校总计优秀102030非优秀453075总计5550105根据题意,由题中数据得,有95﹪的把握认为两个学校数学成绩有差异.【点睛】本题主要考查了分层抽样及频率分布直方图的相关知识、独立性检验及其应用,属于中档题,注意运算准确.19、(1)函数的单调减区间是,增区间是;(2);(3).【解析】
(1)根据解析式求出g(x)的定义域和g′(x),再求出临界点,求出g′(x)<0和g′(x)>0对应的解集,再表示成区间的形式,即所求的单调区间;(2)先求出f(x)的定义域和f′(x),把条件转化为f′(x)≤0在(1,+∞)上恒成立,再对f′(x)进行配方,求出在x∈(1,+∞)的最大值,再令f′(x)max≤0求解;(3)先把条件等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得f′(x)max,并把它代入进行整理,再求f′(x)在[e,e2]上的最小值,结合(2)求出的a的范围对a进行讨论:和,分别求出f′(x)在[e,e2]上的单调性,再求出最小值或值域,代入不等式再与a的范围进行比较.【详解】由已知函数的定义域均为,且(1)函数,则,当且时,;当时,.所以函数的单调减区间是,增区间是;(2)因在上为减函数,故在上恒成立,所以当时,,又,故当,即时,,所以于是,故的最小值为;(3)命题“若使成立”等价于:“当时,有”,由(2),当时,,∴,问题等价于:“当时,有”,①当时,由(2),在上为减函数,则,故.②当时,由于在上为增函数,故的值域为,即.由的单调性和值域知,唯一,使,且满足:当时,,为减函数;当时,,为增函数;所以,,.所以,,与矛盾,不合题意.综上,得.【点睛】本题是利用导数研究函数的单调性、极值,是导数应用的基本问题,主要依据“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”.确定函数的极值,遵循“求导数,求驻点,研究单调性,求极值”.不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决.本题的难点在于利用转化思想的灵活应用.20、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;
(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.21、(1).(2).【解析】分析:(1)运用向量的坐标运算,可得M的坐标,进而得到直线OM的斜率,进而得证;(2)由(1)知,椭圆方程设为,设PQ的方程,与椭圆联立,运用韦达定理和中点坐标公式,以及弦长公式,解方程即可得到a,b的值,进而得到椭圆方程.详解:(1)∵,,,所以.∴,解得,于是,∴椭圆的离心率为.(2)由(1)知,∴椭圆的方程为即①依题意,圆心是线段的中点,且.由对称性可知,与轴不垂直,设其直线方程为,代入①得:,设,,则,,由得,解得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论