高中数学椭圆及其标准方程课件新人教A版选修_第1页
高中数学椭圆及其标准方程课件新人教A版选修_第2页
高中数学椭圆及其标准方程课件新人教A版选修_第3页
高中数学椭圆及其标准方程课件新人教A版选修_第4页
高中数学椭圆及其标准方程课件新人教A版选修_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

椭圆及其标准方程林口四中吴淑琴椭圆及其标准方程林口四中吴淑琴1生活中的椭圆1.问题情境如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?生活中的椭圆1.问题情境如何精确地设计、制作、建造出现实生活2数学实验[1]取一条细绳,[2]把它的两端固定在板上的两点F1、F2[3]用铅笔尖(M)把细绳拉紧,在板上慢慢移动看看画出的图形观察做图过程:[1]绳长应当大于F1、F2之间的距离。[2]由于绳长固定,所以M到两个定点的距离和也固定。动手画:数学实验[1]取一条细绳,观察做图过程:[1]3提出问题:

1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什条件?其轨迹如何?2.当图钉之间的距离等于绳长时,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?

提出问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点4高中数学椭圆及其标准方程PPT课件新人教A版选修5高中数学椭圆及其标准方程PPT课件新人教A版选修6高中数学椭圆及其标准方程PPT课件新人教A版选修7

探究:|MF1|+|MF2|>|F1F2||MF1|+|MF2|=|F1F2||MF1|+|MF2|<|F1F2|椭圆不存在线段探究:|MF1|+|MF2|>|F1F2||MF1|+8[一]椭圆的定义平面上到两个定点的距离的和等于定长(2a)(大于|F1F2|)的点的轨迹叫椭圆。定点F1、F2叫做椭圆的焦点。两焦点之间的距离叫做焦距(2C)。F1F2M椭圆定义的文字表述:椭圆定义的符号表述:[一]椭圆的定义平面上到两个定点的距离的和等于定长(2a)9[1]建系设坐标[2]分析列方程[3]化简作结论[二]求椭圆的方程[1]建系设坐标[二]求椭圆的方程102.学生活动♦探讨建立平面直角坐标系的方案建立平面直角坐标系通常遵循的原则:对称、“简洁”OxyOxyOxyMF1F2形式一F1F2形式二OxyMOxy2.学生活动♦探讨建立平面直角坐标系的方案建立平面直角坐标11解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).

设M(x,y)是椭圆上任意一点,M与F1和F2的距离的和等于正常数2a

(2a>2c)

,椭圆的焦距2c(c>0),则F1、F2的坐标分别是(c,0)、(c,0).xF1F2M0y3.建构数学(问题:下面怎样化简?)由椭圆的定义得,限制条件:代入坐标1)椭圆的标准方程的推导对于含有两个根式的方程,可以采用移项两边平方或者分子有理化进行化简。解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线12整理得两边再平方,得移项后平方两边除以得这样设法不仅可以使方程简单整齐,而且b还有明确的意义。整理得两边再平方,得移项后平方两边除以13总体印象:对称、简洁,“像”直线方程的截距式焦点在y轴:焦点在x轴:2)椭圆的标准方程1oFyx2FM12yoFFMx总体印象:对称、简洁,“像”直线方程的截距式焦点在y轴:焦点14

图形方程焦点F(±c,0)F(0,±c)a,b,c之间的关系a2=b2+c2∣

MF1∣+∣

MF2∣

=2a

(2a>2c>0)定义12yoFFMx1oFyx2FM3)两类标准方程的对照表图形方程焦点F(±c,0)F(0,±c)a,b15共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.不同点:焦点在x轴的椭圆项分母较大.焦点在y轴的椭圆项分母较大.共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标161方程再认识

判定下列椭圆的焦点在?轴,并指明a2、b2,写出焦点坐标答:在X轴。(-3,0)和(3,0)答:在y轴。(0,-5)和(0,5)答:在y轴。(0,-1)和(0,1)判断椭圆标准方程的焦点在哪个轴上的准则:焦点在分母大的那个轴上。1方程再认识

判定下列椭圆的焦点在?轴,并指明a2、b2,17将下列方程化为标准方程,并判定焦点在哪个轴上,写出焦点坐标在上述方程中,A、B、C满足什么条件,就表示椭圆?答:A、B、C同号,且A不等于B。将下列方程化为标准方程,并判定焦点在哪个轴上,182.应用概念:(1)

两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P到两焦点距离的和等于10.例1:写出适合下列条件的椭圆的标准方程(2)

求两个焦点的坐标分别是(0,-2)﹑(0,2),并且经过点的椭圆方程。2.应用概念:(1)两个焦点的坐标分别是19高中数学椭圆及其标准方程PPT课件新人教A版选修20高中数学椭圆及其标准方程PPT课件新人教A版选修21(2)还有其他解法吗?(2)还有其他解法吗?22练习:写出适合下列条件的椭圆的标准方程[1]a=4,b=1,焦点在x轴[2]a=4,c=,焦点在y轴上[3]a+b=10,c=求一个椭圆的标准方程需求几个量?答:两个。a、b或a、c或b、c.练习:写出适合下列条件的椭圆的标准方程[1]a=4,b=234:课堂练习

1椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为(

)A.5B.6C.4D.10A2.已知椭圆的方程为,焦点在X轴上,则其焦距为()A.2B.2C.2D.A4:课堂练习1椭圆上一点P到一个焦点的距离为5243、如果方程表示焦点在y轴上的椭圆,则的k取值范围是___________

3、如果方程25思考:[1]已知三角形ABC的一边BC长为6,周长为16,求顶点A的轨迹方程(A的轨迹方程是一个椭圆,注意A与B,C不共线)思考:[1]已知三角形ABC的一边BC长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论