湖北省黄冈市黄州中学2023年数学高二下期末检测模拟试题含解析_第1页
湖北省黄冈市黄州中学2023年数学高二下期末检测模拟试题含解析_第2页
湖北省黄冈市黄州中学2023年数学高二下期末检测模拟试题含解析_第3页
湖北省黄冈市黄州中学2023年数学高二下期末检测模拟试题含解析_第4页
湖北省黄冈市黄州中学2023年数学高二下期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二面角为,、是棱上的两点,、分别在半平面、内,,且,,则的长为A.1 B. C. D.2.等比数列的前n项和为,已知,则A. B. C. D.3.已知函数为奇函数,则()A. B. C. D.4.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.5.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.6.把函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向右平移个单位,这是对应于这个图象的解析式为()A. B.C. D.7.已知,则()A. B. C. D.8.函数(且)的图象可能为()A. B. C. D.9.若复数在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是()A. B. C. D.11.已知点F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则M点的纵坐标为()A.2 B.4 C.±2 D.±412.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.设椭圆的两个焦点分别为,点在椭圆上,且,,则该椭圆的离心率为.14.某工厂在试验阶段大量生产一种零件,这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设表示其中合格品的个数,则______.15.已知函数,则__________.16.已知(为常数),在上有最小值,那么在上的最大值是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(Ⅰ)证明:;(Ⅱ)若对所有的,都有,求实数的取值范围.18.(12分)如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在A市的普及情况,A市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到如表:(单位:人)经常使用网络外卖偶尔或不用网络外卖合计男性5050100女性6040100合计11090200(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用网络外卖的情况与性别有关?(2)将频率视为概率,从A市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X,求X的数学期望和方差.参考公式:K2=n参考数据:P0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82819.(12分)已知二阶矩阵对应的变换将点变换成,将点变换成.(1)求矩阵的逆矩阵;(2)若向量,计算.20.(12分)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6,E是侧棱PD上的点且PE=13PD,F是侧棱PA上的点且PF=12(1)求平面EFG的一个法向量n;(2)求直线AG与平面EFG所成角θ的大小;(3)求点A到平面EFG的距离d.21.(12分)(1)求方程的非负整数解的个数;(2)某火车站共设有4个“安检”入口,每个入口每次只能进1个旅客求—个小组4人进站的不同方案种数,要求写出计算过程.22.(10分)在中,角的对边分别为,且.(1)求的值;(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:考点:点、线、面间的距离计算2、A【解析】设公比为q,则,选A.3、A【解析】

根据奇函数性质,利用计算得到,再代入函数计算【详解】由函数表达式可知,函数在处有定义,则,,则,.故选A.【点睛】解决本题的关键是利用奇函数性质,简化了计算,快速得到答案.4、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.5、D【解析】

由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.6、A【解析】试题分析:函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变得到,再把图象向右平移个单位,得到.考点:三角函数图像变换.7、C【解析】

利用指数函数、对数函数的单调性,将a,b,c分别与1和0比较,得到结论.【详解】因为所以故选:C【点睛】本题主要考查指数函数、对数函数的单调性的应用,还考查了转化化归的思想和理解辨析的能力,属于基础题.8、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.9、A【解析】,所以,选A.10、B【解析】

利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【详解】由球体的体积公式得,,,,,,与最为接近,故选C.【点睛】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题.11、C【解析】

求出抛物线的焦点坐标,推出M的坐标,然后求解,得到答案.【详解】由题意,抛物线的焦点,是上一点,的延长线交轴于点,若为的中点,如图所示,可知的横坐标为1,则的纵坐标为,故选C.【点睛】本题主要考查了抛物线的简单性质的应用,着重考查了推理与运算能力,属于基础题.12、C【解析】

由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:在中,,,设,则.考点:椭圆的定义.【易错点晴】本题的考点是椭圆定义的考查,即的等式关系和几何意义.由给定的条件可知三角形不仅是直角三角形,也可以得到其中一个锐角,由此可用来表示直角三角形的三个边,再根据椭圆的定义便可建立等式关系,求得椭圆的离心率.椭圆中研究的关系不仅选择填空会考有时解答题也会出,它是研究椭圆基础.14、1【解析】

设两项技术指标达标的概率分别为,得到,求得的值,进而得到,可得分布列和的值,得到答案.【详解】由题意,设两项技术指标达标的概率分别为,由题意,得,解得,所以,即一个零件经过检测为合格品的概率为,依题意知,所以.故答案为1.【点睛】本题主要考查了随机变量的分布列及其数学期望的计算,其中解答中根据概率的计算公式,求得的值,得到随机变量是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.15、1【解析】

先求内层函数的值,解得函数值为2,再将2代入求值即可【详解】当时,满足对应的表达式,先求内层函数,当时,满足对应的表达式,再求,所以【点睛】分段函数求值问题需注意先求解内层函数,再依次求解外层函数,每一个括号内对应的值都必须在定义域对应的区间内进行求值16、57【解析】试题分析:单调增区间为减区间为,最大值为考点:函数导数与最值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ).【解析】

试题分析:(Ⅰ)令,求导得单调性,进而得,从而得证;(Ⅱ)记求两次导得在递增,又,进而讨论的正负,从而得原函数的单调性,进而可求最值.试题解析:(Ⅰ)令,由∴在递减,在递增,∴∴即成立.(Ⅱ)记,∴在恒成立,,∵,∴在递增,又,∴①当时,成立,即在递增,则,即成立;②当时,∵在递增,且,∴必存在使得.则时,,即时,与在恒成立矛盾,故舍去.综上,实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为.18、(1)不能;(2)112【解析】

(1)把表格中的数据依次代入公式,算出K2与2.072(2)X服从二项分布X~【详解】(1)由列联表中的数据,可得K2故不能在犯错误的概率不超过0.15的前提下认为A市使用网络外卖情况与性别有关.(2)由2×2列联表,可知抽到经常使用网络外卖的网民的频率为110200将频率视为概率,即从A市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为1120由题意得X~故随机变量X的期望E(X)=10×11∴方差为D(X)=10×11【点睛】由于A市所有参与调查的网民中总体是未知的,所以无法用超几何分布模型求解.19、(1);(2).【解析】分析:(1)利用阶矩阵对应的变换的算法解出,再求(2)先计算矩阵的特征向量,再计算详解:(1),则,,解得,,,,所以,所以;(2)矩阵的特征多项式为,令,解得,,从而求得对应的一个特征向量分别为,.令,求得,,所以.点睛:理解矩阵的计算规则和相互之间的转换.20、(1)n=(0,1,2)(2)直线AG与平面EFG所成角θ=arcsin(3)6【解析】

(1)建立空间直角坐标系,求出EF=(3,2,-1),EG=(-2,4,-2),设平面EFG的一个法向量n=(x,y,z),由n⋅EF(2)求出AG=(-8,2,2),由sinθ=|cos<AG,n(3)求出EA=(6,2,-4),由点A到平面EFG的距离d=【详解】(1)∵在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6E是侧棱PD上的点且PE=13PD,F是侧棱PAG是△PBC的重心.如图建立空间直角坐标系.∴D(0,-6,0),P(0,0,6),E(0,-2,4),A(6,0,0),B(0,6,0),C(-6,0,0),G(-2,2,2),EF=(3,2,-1),EG=(-2,4,设平面EFG的一个法向量n=(x,y,z)则n⋅EF=3x+2y-z=0平面EFG的一个法向量n=(0,1,2)(2)AG=(-8,2,则sinθ=|∴直线AG与平面EFG所成角θ=arcsin(3)EA=(6,2,∴点A到平面EFG的距离d=|【点睛】本题主要考查了平面的法向量、线面角、点到平面的距离的求法,空间中线线、线面、面面间的位置关系及数形结合思想,属于中档题.21、(1)56;(2)840种,计算过程见解析【解析】

(1)利用隔板法求结果;(2)将问题分4种情况分别得出其方案数,可求得结果,注意需考虑从同一个安检口的旅客的通过顺序.【详解】(1)若定义,其中,则是从方程的非负整数解集到方程的正整数解集的映射,利用隔板法得,方程正整数解得个数是从而方程的非负整数解得个数也是56;(2)这4名旅客通过安检口有4种情况:从1个安检口通过,从2个安检口通过,从3个安检口通过,从4个安检口通过。从1个安检口通过共有:种方案;从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论