版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n()个整点,则称函数f(x)为n阶整点函数.有下列函数:①②③④其中是一阶整点的是()A.①②③④ B.①③④ C.④ D.①④2.甲、乙等人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有().A.种 B.种 C.种 D.种3.在复平面内,复数所对应的点在第几象限()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知复数,则()A.4 B.6 C.8 D.105.已知关于的方程为(其中),则此方程实根的个数为()A.2 B.2或3 C.3 D.3或46.设随机变量,随机变量,若,则()A. B. C. D.7.已知i是虚数单位,若z=1+i1-2i,则z的共轭复数A.-13-i B.-18.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则最多有一个二等品的概率为()A.B.C.D.9.设集合,则()A. B. C. D.10.甲、乙独立地解决同一数学问题,甲解决这个问题的概率是1.8,乙解决这个问题的概率是1.6,那么其中至少有1人解决这个问题的概率是()A.1.48 B.1.52 C.1.8 D.1.9211.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于A.0.2B.0.8C.0.196D.0.80412.设直线与圆交于A,B两点,圆心为C,若为直角三角形,则()A.0 B.2 C.4 D.0或4二、填空题:本题共4小题,每小题5分,共20分。13.三棱锥P﹣ABC中,PA=PB=AB=AC=BC,M是PA的中点,N是AB的中点,当二面角P﹣AB﹣C为时,则直线BM与CN所成角的余弦值为______.14.设,是实数集的两个子集,对于,定义:若对任意,,则,,满足的关系式为______.15.设,.已知矩阵,其中,,那么B=________.16.设随机变量服从正态分布,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;18.(12分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:分类积极参加班级工作不太主动参加班级工作总计学习积极性高18725学习积极性一般61925总计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.19.(12分)随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近60天,每天揽件数量统计如下表:以上数据已做近似处理,并将频率视为概率.(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;(2)①估计该公司对每件包裹收取的快递费的平均值;②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?20.(12分)已知双曲线,为上的任意点.(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值.21.(12分)已知等差数列的前n项和为,各项为正的等比数列的前n项和为,,,.(1)若,求的通项公式;(2)若,求22.(10分)已知函数.(1)的最小正周期及单调递增区间;(2)当时,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据新定义的“一阶整点函数”的要求,对于四个函数一一加以分析,它们的图象是否通过一个整点,从而选出答案即可.【详解】对于函数,它只通过一个整点(1,2),故它是一阶整点函数;
对于函数,当x∈Z时,一定有g(x)=x3∈Z,即函数g(x)=x3通过无数个整点,它不是一阶整点函数;
对于函数,当x=0,-1,-2,时,h(x)都是整数,故函数h(x)通过无数个整点,它不是一阶整点函数;
对于函数,它只通过一个整点(1,0),故它是一阶整点函数.
故选D.【点睛】本题主要考查函数模型的选择与应用,属于基础题,解决本题的关键是对于新定义的概念的理解,即什么叫做:“一阶整点函数”.2、B【解析】由题意利用捆绑法求解,甲、乙两人必须相邻的方法数为种.选.3、D【解析】
化简复数,找到对应点,判断象限.【详解】复数对应点为:在第四象限故答案选D【点睛】本题考查了复数的计算,属于简单题.4、D【解析】
根据复数的模长公式进行计算即可.【详解】z=8+6i,则8﹣6i,则||10,故选:D.【点睛】本题主要考查复数的模长的计算,根据条件求出是解决本题的关键.5、C【解析】分析:将原问题转化为两个函数交点个数的问题,然后利用导函数研究函数的性质即可求得最终结果.详解:很明显不是方程的根,据此可将方程变形为:,原问题等价于考查函数与函数的交点的个数,令,则,列表考查函数的性质如下:++-++单调递增单调递增单调递减单调递减单调递增函数在有意义的区间内单调递增,故的单调性与函数的单调性一致,且函数的极值绘制函数图像如图所示,观察可得,与函数恒有3个交点,即题中方程实根的个数为3.本题选择C选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6、A【解析】试题分析:∵随机变量,∴,解得.∴,∴,故选C.考点:1.二项分布;2.n次独立重复试验方差.7、C【解析】
通过分子分母乘以分母共轭复数即可化简,从而得到答案.【详解】根据题意z=1+i1+2i【点睛】本题主要考查复数的四则运算,共轭复数的概念,难度较小.8、B【解析】解:解:从这批产品中抽取4个,则事件总数为个,其中恰好有一个二等品的事件有个,根据古典概型的公式可知恰好有一个二等品的概率为9、C【解析】
先求,再求【详解】,故选C.【点睛】本题考查了集合的并集和补集,属于简单题型.10、D【解析】1-1.2×1.4=1.92,选D项.11、C【解析】试题分析:由题意可知发病的牛的头数为ξ~B(10,0.02),所以D(ξ)=10×0.02×(1-0.02)=0.196;故选C.考点:二项分布的期望与方差.12、D【解析】
是等腰三角形,若为直角三角形,则,求出圆心到直线的距离,则.【详解】圆心为,半径为,,∵为直角三角形,∴,而,∴,即,或4.故选:D.【点睛】本题考查直线与圆的位置关系.在直线与圆相交问题中垂径定理常常要用到.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先连结PN,根据题意,∠PNC为二面角P-AB-C的平面角,得到∠PNC=,根据向量的方法,求出两直线方向向量的夹角,即可得出结果.【详解】解:连结PN,因为N为AB中点,PA=PB,CA=CB,所以,,所以,∠PNC为二面角P-AB-C的平面角,所以,∠PNC=,设PA=PB=AB=AC=BC=2,则CN=PN=BM=,,设直线BM与CN所成角为,,【点睛】本题主要考查异面直线所成的角,灵活运用向量法求解即可,属于常考题型.14、或.【解析】
根据新定义、可以得到两种情况,一种,另一种情况,这样就可以确定,,满足的关系.【详解】因为对任意,,所以必有一个0,一个是1.根据定义可知:当时,则有,当时,则有,根据补集定义可知:或.故答案为:或.【点睛】本题考查了新定义题,考查了数学阅读能力,考查了集合补集定义的理解.15、【解析】
根据条件列方程组,解得结果.【详解】由定义得,所以故答案为:【点睛】本题考查矩阵运算,考查基本分析求解能力,属基础题.16、【解析】分析:根据随机变量服从正态分布,看出这组数据对应的正态曲线的对称轴,根据正态曲线的特点,得到,从而可得结果.详解:随机变量服从正态分布,,得对称轴是,所以,可得,故答案为.点睛:本题考查正态曲线的性质,从形态上看,正态分布是一条单峰,对称呈种形的曲线,其对称轴,并在时取最大值,从点开始,曲线向正负两个方向递减延伸,不断逼近轴,但永不与轴相交,因此说明曲线在正负两个方向都是以轴为渐近线的.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)由末三项二项式系数和构造方程,解方程求得结果;(2)列出展开式通项,设第项为系数最大的项,得到不等式组,从而求得的取值,代入得到结果.【详解】(1)展开式末三项的二项式系数分别为:,,则:,即:,解得:(舍)或(2)由(1)知:展开式通项为:设第项即为系数最大的项,解得:系数最大的项为:或【点睛】本题考查二项式定理的综合应用,涉及到二项式系数的问题、求解二项展开式中系数最大的项的问题,属于常规题型.18、(1);(2)答案见解析.【解析】
(1)结合表格根据古典概型的概率公式计算概率即可;(2)计算的观测值,对照表中数据得出统计结论.【详解】(1)积极参加班级工作的学生有24人,总人数为50人,所以抽到积极参加班级工作的学生的概率,不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生概率.(2)由列联表知,的观测值≈11.538,由11.538>10.828.所以在犯错误的概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.【点睛】本题考查了古典概型的应用问题,也考查了两个变量线性相关的应用问题,准确计算的观测值是解题的关键,是基础题目.19、(1)(2)①平均值可估计为15元.②公司不应将前台工作人员裁员1人.【解析】分析:(1)利用古典概型概率公式可估计样本中包裹件数在之间的概率为,服从二项分布,从而可得结果;(2)①整理所给数据,直接利用平均值公式求解即可;②若不裁员,求出公司每日利润的数学期望,若裁员一人,求出公司每日利润的数学期望,比较裁员前后公司每日利润的数学期望即可得结果.详解:(1)样本中包裹件数在101~300之间的天数为36,频率,故可估计概率为,显然未来5天中,包裹件数在101~300之间的天数服从二项分布,即,故所求概率为(2)①样本中快递费用及包裹件数如下表:包裹重量(单位:)12345快递费(单位:元)1015202530包裹件数43301584故样本中每件快递收取的费用的平均值为,故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,公司快递收入增加15(元),若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450实际揽件数50150250350450频率0.10.10.50.20.150×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260故公司平均每日利润的期望值为(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450实际揽件数50150250300300频率0.10.10.50.20.150×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235故公司平均每日利润的期望值为(元)因,故公司不应将前台工作人员裁员1人.点睛:求解离散型随机变量的数学期望的一般步骤:①“判断取值”,即判断随机变量的所有可能取值以及取每个值所表示的意义;②“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率加法公式、独立事件的概率公式以及对立事件的概率公式等),求出随机变量取每个值时的概率;③“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;④“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度20、(1)证明见解析.(2)的最小值为【解析】
试题分析:(1)求出双曲线的渐近线方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 格林童话读后感(15篇)
- 大学认识实习报告范文汇编10篇
- 六一儿童节主题活动总结10篇
- 个人试用期转正工作总结(汇编15篇)
- 幼儿园学前班新学期工作计划
- 教师的感恩演讲稿四篇
- 军训个人心得体会(集锦15篇)
- 山西财经大学计算机应用技术814数据结构考研题库
- 九年级下册数学教学计划锦集(17篇)
- 健康检查服务合同(2篇)
- 探讨提高呼吸内科患者痰培养标本送检率的护理措施
- 结构化面试表格
- 地热能资源的潜力及在能源领域中的应用前景
- 浙江省台州市2023-2024学年高二上学期1月期末语文试题 Word版含解析
- 2023版:美国眼科学会青光眼治疗指南(全文)
- 家长会课件:小学寒假家长会课件
- 变刚度单孔手术机器人系统设计方法及主从控制策略
- 儿童室外游戏机创业计划书
- 2023年重庆辅警招聘考试题库及答案
- 2024年浙江宁波永耀供电服务有限公司招聘笔试参考题库含答案解析
- 履行职责、作风建设、廉洁自律情况个人述职报告(四篇合集)
评论
0/150
提交评论