北京市海淀区十一学校2023年数学高二第二学期期末统考试题含解析_第1页
北京市海淀区十一学校2023年数学高二第二学期期末统考试题含解析_第2页
北京市海淀区十一学校2023年数学高二第二学期期末统考试题含解析_第3页
北京市海淀区十一学校2023年数学高二第二学期期末统考试题含解析_第4页
北京市海淀区十一学校2023年数学高二第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的离心率为,抛物线的准线与双曲线的渐近线交于点,(为坐标原点)的面积为4,则抛物线的方程为()A. B. C. D.2.若,则()A.2 B.4 C. D.83.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A,则不同的安排有()A.6 B.12 C.18 D.244.某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()A.1 B.2 C.3 D.45.已知原命题:已知,若,则,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为()A. B. C. D.6.已知是虚数单位,,则复数的共轭复数为()A. B. C. D.7.已知,,,则().A. B. C. D.8.若随机变量服从正态分布在区间上的取值概率是0.2,则在区间上的取值概率约是()A.0.3 B.0.4 C.0.6 D.0.89.已知数列的前项和为,且,若,则()A. B. C. D.10.执行如图所示的程序框图,则输出的k的值为()A.4 B.5 C.6 D.711.已知数列an:12,122,222,32①210-1210是an的第2036项;②存在常数M,使得Sn<M恒成立;③其中正确的序号是()A.①③ B.①④ C.①③④ D.②③④12.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次,至少击中3次的概率为()A.0.85 B.0.8192 C.0.8 D.0.75二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若是的充分条件,则实数的取值范围是______.14.在四棱锥中,底面是等腰梯形,其中∥,若,,且侧棱与底面所成的角均为45°,则该棱锥的体积为_________.15.已知幂函数的图象经过点,则实数α的值是_______.16.中,内角所对的边分别是,若边上的高,则的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角所对的边长分别为,且满足.(Ⅰ)求的大小;(Ⅱ)若的面积为,求的值.18.(12分)用函数单调性的定义证明:函数在是减函数.19.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.20.(12分)甲、乙两位同学学生参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下:甲:7876749082乙:9070758580(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由.21.(12分)(1)3个不同的球放入5个不同的盒子,每个盒子至多放1个球,共有多少种放法?(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限,共有多少种放法?22.(10分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意可知该双曲线是等轴双曲线,故渐近线方程是,而抛物线的准线方程为,由题设可得,则,所以(为坐标原点)的面积为,应选答案C。2、D【解析】

通过导数的定义,即得答案.【详解】根据题意得,,故答案为D.【点睛】本题主要考查导数的定义,难度不大.3、B【解析】

按照村小A安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数.【详解】村小A安排一人,则有;村小A若安排2人,则有.故共有.选B.【点睛】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题.4、A【解析】

由题意知X~B(4,),根据二项分布的方差公式进行求解即可.【详解】∵每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,∴X~B(4,),则X的方差D(X)=4(1)=1,故选A.【点睛】本题主要考查离散型随机变量的方差的计算,根据题意得到X~B(4,)是解决本题的关键.5、D【解析】

判断原命题的真假即可知逆否命题的真假,由原命题得出逆命题并判断真假,即可得否命题的真假。【详解】由题原命题:已知,若,则,为真命题,所以逆否命题也是真命题;逆命题为:已知,若,则,为真命题,所以否命题也是真命题。故选D.【点睛】本题考查四种命题之间的关系,解题的关键是掌握互为逆否的命题同真假,属于基础题。6、A【解析】

先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【详解】因为,所以.故选A【点睛】本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.7、C【解析】试题分析:因为所以选C.考点:比较大小8、A【解析】

根据正态分布曲线的对称性可知,在区间上的取值概率是0.2,可得在区间上的取值概率是0.6,从而可得在区间上的取值概率。【详解】解:据题设分析知,因为随机变量服从正态分布且,根据对称性可得,所求概率,故选A.【点睛】本题考查了正态分布的应用,解题的关键是熟知正态曲线是关于对称,在正态曲线下方和x轴上方范围内的区域面积为1等正态密度曲线图象的特征.9、B【解析】分析:根据等差数列的判断方法,确定数列为等差数列,再由等差数列的性质和前n项和公式,即可求得的值.详解:,得数列为等差数列.由等差数列性质:,故选B.点睛:本题考查等差数列的判断方法,等差数列的求和公式及性质,考查了推理能力和计算能力.等差数列的常用判断方法(1)定义法:对于数列,若(常数),则数列是等差数列;(2)等差中项:对于数列,若,则数列是等差数列;(3)通项公式:(为常数,)⇔是等差数列;(4)前项和公式:(为常数,)⇔是等差数列;(5)是等差数列⇔是等差数列.10、A【解析】试题分析:模拟运算:k=0,S=0,S<100成立S=0+2S=1+2S=3+2S=7+2S=15+2S=15+2S=31+2S=63+26=127,k=6+1=7,S=127<100考点:程序框图.11、B【解析】

找出数列an的规律:分母为2k的项有2k-1项,并将这些项排成杨辉三角形式的数阵,使得第k有2k-1项,每项的分母均为2k,并计算出每行各项之和b【详解】由题意可知,数列an的规律为:分母为2k的项有2k-1项,将数列an中的项排成杨辉三角数阵,且使得第k12对于命题①,210-1210位于数阵第21对于命题②,数阵中第k行各项之和为bk,则b且数列bk的前kTk当k→+∞时,Tk→+∞,因此,不存在正数M,使得对于命题③,易知第9行最后一项位于数列an21第10行最后一项位于数列an的项数为2036,且1013<2019<2036则a2019位于数阵第10行第1006项(即2019-1013=1006所以,S=1023由①知,S2036=T则恰好满足Sn>1019的项an位于第11则有T10+1由于64×63=4032,64×65=4160,则63×64<4096<64×65,∴m=64,因此,满足Sn>1019的最小正整数故选:B.【点睛】本题考查归纳推理,考查与数列相关的知识,关键要找出数列的规律,在解题时可以将规律转化为杨辉三角来处理,在做题过程中找出项与数阵中相对应的位置,综合性较强,属于难题。12、B【解析】

因为某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次看做4次独立重复试验,则至少击中3次的概率二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对命题进行化简,将转化为等价命题,即可求解.【详解】又是的充分条件,即,它的等价命题是,解得【点睛】本题主要考查了四种命题的关系,注意原命题与逆否命题的真假相同是解题的关键.14、【解析】

过作于,求得,,,设为的中点,则,由题意得顶点在底面的射影为,且,再根据体积公式即可求出答案.【详解】解:过作于,∵,,∴,,∴,设为的中点,则,∵侧棱与底面所成的角均为45°,∴顶点在底面的射影到各顶点的距离相等,即为等腰梯形的外接圆的圆心,即为点,∴为四棱锥的高,即平面,∴,∴该棱锥的体积,故答案为:.【点睛】本题主要考查棱锥的体积公式,考查线面垂直的的性质,考查推理能力,属于中档题.15、【解析】

由幂函数的定义,把代入可求解.【详解】点在幂函数的图象上,,,故答案为:【点睛】本题考查幂函数的定义.幂函数的性质:(1)幂函数在上都有定义;(2)幂函数的图象过定点;(3)当时,幂函数的图象都过点和,且在上单调递增;(4)当时,幂函数的图象都过点,且在上单调递减;(5)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数.16、【解析】

由三角形的面积公式得:,即,然后由余弦定理得:,从而得到,可求出其最大值,又由基本不等式得【详解】因为所以由三角形的面积公式得:,所以所以由余弦定理得:所以,其中,所以当时,取得最大值又由基本不等式得,当且仅当即时取得等号综上:的取值范围是故答案为:【点睛】本题考查了三角形的面积公式、余弦定理、三角函数的单调性、两角和差的正弦公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(Ⅰ)由已知及正弦定理可得,sinCsinB=sinBcosC,进而利用同角三角函数基本关系式可求tanC=,即可得解C的值;(Ⅱ)由(Ⅰ)利用余弦定理可求a2+b2﹣c2=ab,又a2﹣c2=2b2,可得a=3b,利用三角形面积公式即可解得b的值.详解:1由已知及正弦定理可得,,,,2

由1可得,,,又,,由题意可知,,,可得:

点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18、证明过程见解析.【解析】

按照单调性的定义进行证明,先设是上任意两个实数,则,然后用差比的方法,结合,比较出,这样就证明出函数在是减函数.【详解】设是上任意两个实数,则,,,所以有,因此函数在是减函数.【点睛】本题考查了用定义证明函数单调性,用差比的方法比较出的大小关系是解题的关键,一般在差比比较过程中,往往会用到因式分解、配方法、通分法等方法.19、(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.1.【解析】试题分析:试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故又,故因此所求概率为(Ⅲ)记续保人本年度的保费为,则的分布列为

因此续保人本年度的平均保费与基本保费的比值为【考点】条件概率,随机变量的分布列、期望【名师点睛】条件概率的求法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=,求出P(B|A);(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数n(AB),得P(B|A)=.求离散型随机变量均值的步骤:(1)理解随机变量X的意义,写出X可能取得的全部值;(2)求X取每个值时的概率;(3)写出X的分布列;(4)由均值定义求出EX.20、(I)茎叶图见解析;(II)甲.【解析】试题分析:(I)由图表给出的数据画出茎叶图;(II)根据公式求出两组数据的平均数及方差,结合计算结果,甲乙平均数相同,因此选方差较小的参加比赛.试题解析:解:(Ⅰ)用茎叶图表示如下:……3分(Ⅱ),,……7分而,……11分因为,,所以在平均数一样的条件下,甲的水平更为稳定,所以我认为应该派甲去.…………12分考点:1.茎叶图;2.平均数与方差.【方法点晴】本题考查的是茎叶图和平均数与方差的计算,属基础题目.根据计算结果选出合适的人参加数学竞赛,其中平均数反映的是一组数据的平均水平,平均数越大,则该名学生的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名学生的成绩越稳定;要求学生结合算出的数据灵活掌握.21、(1).(2)【解析】

(1)把三个不同的小球分别放入5个不同的盒子里(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论