




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内必存在直线与m平行,不一定存在直线与m垂直D.β内不一定存在直线与m平行,但必存在直线与m垂直2.若,则()A.2 B.4 C. D.83.设复数,是的共轭复数,则的虚部为A. B. C. D.4.命题“对任意的,”的否定是A.不存在, B.存在,C.存在, D.对任意的,5.一个袋中装有大小相同的个白球和个红球,现在不放回的取次球,每次取出一个球,记“第次拿出的是白球”为事件,“第次拿出的是白球”为事件,则事件与同时发生的概率是()A. B. C. D.6.设椭机变量X~N(3,1),若P(X>4)=p,则P(2<X<4)=A.+p B.1-p C.1-2p D.-p7.观察下列各式:则()A.28B.76C.123D.1998.从名男生和名女生中选出人去参加辩论比赛,人中既有男生又有女生的不同选法共有()A.种 B.种 C.种 D.种9.已知某批零件的长度误差(单位)服从正态分布,若,,现从中随机取一件,其长度误差落在区间内的概率()A.0.0456 B.0.1359 C.0.2718 D.0.317410.命题“”的否定是()A. B.C. D.11.以下四个命题,其中正确的个数有()①由独立性检验可知,有的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程中,当解释变量每增加一个单位时,预报变量平均增加0.2个单位;④对分类变量与,它们的随机变量的观测值来说,越小,“与有关系”的把握程度越大.A.1 B.2 C.3 D.412.已知向量,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知纯虚数满足(其中是虚数单位),则__________.14.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为.15.如果,且为第四象限角,那么的值是____.16.定积分的值等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的单调区间;(2)若在处取得极大值,求的取值范围.18.(12分)已知函数=│x+1│–│x–2│.(1)求不等式≥1的解集;(2)若不等式≥x2–x+m的解集非空,求实数m的取值范围.19.(12分)已知,(1)求的值;(2)若且,求的值;(3)求证:.20.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:年份201320142015201620172018年宣传费(万元)384858687888年销售量(吨)16.818.820.722.424.025.5经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:75.324.618.3101.4(1)根据所给数据,求关于的回归方程;(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,)附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为21.(12分)某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:售出水量(单位:箱)76656收入(单位:元)165142148125150学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(1)若售出水量箱数与成线性相关,则某天售出9箱水时,预计收入为多少元?(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望.附:回归直线方程,其中,.22.(10分)某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.百分制85分及以上70分到84分60分到69分60分以下等级ABCD规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;根据频率分布直方图,求成绩的中位数精确到;在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【详解】
如图,平面平面,平面,但平面内无直线与平行,故A错.又设平面平面,则,因,故,故B、C错,综上,选D.【点睛】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例.2、D【解析】
通过导数的定义,即得答案.【详解】根据题意得,,故答案为D.【点睛】本题主要考查导数的定义,难度不大.3、C【解析】
由,得,代入,利用复数的代数形式的乘除运算,即可求解.【详解】由题意,复数,得,则,所以复数的虚部为,故选C.【点睛】本题主要考查了共轭复数的概念,以及复数的代数形式的运算,其中解答中熟记复数的基本概念,以及复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
注意两点:1)全称命题变为特称命题;2)只对结论进行否定.“对任意的,”的否定是:存在,选C.5、D【解析】
将事件表示出来,再利用排列组合思想与古典概型的概率公式可计算出事件的概率.【详解】事件:两次拿出的都是白球,则,故选D.【点睛】本题考查古典概型的概率计算,解题时先弄清楚各事件的基本关系,然后利用相关公式计算所求事件的概率,考查计算能力,属于中等题.6、C【解析】分析:根据题目中:“正态分布N(3,1)”,画出其正态密度曲线图:根据对称性,由P(X>4)=p的概率可求出P(2<X<4).详解:∵随机变量X~N(3,1),观察图得,P(2<X<4)=1﹣2P(X>4)=1﹣2p.故选:C.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.7、C【解析】试题分析:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即考点:归纳推理8、C【解析】
在没有任何限制的情况下减去全是男生和全是女生的选法种数,可得出所求结果.【详解】全是男生的选法种数为种,全是女生的选法种数为种,因此,人中既有男生又有女生的不同选法为种,故选C.【点睛】本题考查排列组合问题,可以利用分类讨论来求解,本题的关键在于利用间接法来求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.9、B【解析】
,由此可得答案.【详解】解:由题意有,故选:B.【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.10、C【解析】
命题的否定:任意变存在,并对结论进行否定.【详解】命题的否定需要将限定词和结论同时否定,题目中:为限定词,为条件,为结论;而的否定为,的否定为,所以的否定为故本题正确答案为C.【点睛】本题考查了命题的否定,属于简单题.11、B【解析】对于命题①认为数学成绩与物理成绩有关,不出错的概率是99%,不是数学成绩优秀,物理成绩就有99%的可能优秀,不正确;对于④,随机变量K2的观测值k越小,说明两个相关变量有关系的把握程度越小,不正确;容易验证②③正确,应选答案B。12、C【解析】
首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【点睛】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,,整理得,14、20【解析】试题分析:由分层抽样的方法知样本中松树苗的棵数应为150的,所以样本中松树苗的棵数应为.考点:分层抽样.15、【解析】
利用先求得,再利用求解即可,注意利用角的范围确定三角函数值的符号.【详解】由题,因为,且,则或,因为为第四象限角,所以,则,所以,故答案为:【点睛】本题考查利用同角的三角函数关系求三角函数值,属于基础题.16、ln1【解析】
直接根据定积分的计算法则计算即可.【详解】,故答案为:ln1.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2)【解析】
(1)将代入函数解析式,求出,利用导数值判断的单调区间即可;(2)由题求得,对进行分类讨论,判断在处取得极大值时的范围即可.【详解】(1)由题意,当时,,所以,令,解得,,,解得;,解得,;所以的单调增区间为,单调减区间为;(2)由题意,,①当时,,,解得;,解得,;所以在处取极大值;当时,令,得,,②当时,即,或时,,解得;,解得,;所以在处取极大值;③当,即时,,解得,,解得,,或;所以在处取极大值;④当,即时,,故不存在极值;⑤当时,即时,,解得,;,解得,,或;所以在处取极小值;综上,当在处取得极大值时,.【点睛】本题主要考查利用导数研究函数的单调性和极值,考查了分类讨论的思想,属于中档题.18、(1);(2).【解析】
(1)由于f(x)=|x+1|﹣|x﹣2|,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x),当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x∈(﹣1,2),∴g(x)≤g()1;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max,∴m的取值范围为(﹣∞,].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.19、(1)(2)(3)见解析【解析】分析:(1)令,根据可求的值;(2)由,解得可求的值;(3)利用二项展开式及放缩法即可证明.:详解:(1)令,则=0,又所以(2)由,解得,所以(3)点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.20、(1);(2)见解析.【解析】
分析:(1)由数据可得:,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得回归方程;(2),结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)由令得,由数据可得:,,于是,得故所求回归方程为(2)条件,于是求出,即6年中有3年是“效益良好年”,,由题得,012所以的分布列如表所示,且。点睛:本题主要考查非线性拟合及非线性回归方程的求解与应用以及离散型随机变量的分布列与期望,属于难题.是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程.21、(1)206;(2)见解析【解析】试题分析:(1)先求出君子,代入公式求,,再求线性回归方程自变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场营销理论与实践指导试题及答案
- DB15T 3785-2024甜菜连作障碍消减技术规程
- 小自考汉语言文学2024年清晰目标试题及答案
- 2025年鼠抗肿瘤相关抗原单克隆抗体合作协议书
- 税务师考试的资质认定试题及答案
- 咖啡师考试难题解析试题及答案
- 光学工程测试题及答案
- 2024年调酒师显著变化的趋势试题及答案
- 2024年珠宝鉴定师考试重点试题及答案总结
- 小自考视觉传播设计内容解读及答案
- 江苏省苏州市张家港市2023-2024学年高一年级下册4月期中生物试题(解析版)
- 中医医疗技术手册2013普及版
- 公务手机使用管理制度
- 幼儿英语自然拼读Letter of the Week C
- 早产儿疑难病例护理讨论
- 第18课《在长江源头各拉丹东》课件+2023-2024学年统编版语文八年级下册
- 燃气管道智能化监管与预测性维护
- MOOC 空中机器人-浙江大学 中国大学慕课答案
- 《纸质文物修复与保护》课件-29古籍的装帧形制
- 2024-2029年中国ICT行业市场发展分析及发展趋势与投资前景研究报告
- TPM培训资料-课件
评论
0/150
提交评论