2023年福建省泉州市惠安县第十六中学高二数学第二学期期末达标检测试题含解析_第1页
2023年福建省泉州市惠安县第十六中学高二数学第二学期期末达标检测试题含解析_第2页
2023年福建省泉州市惠安县第十六中学高二数学第二学期期末达标检测试题含解析_第3页
2023年福建省泉州市惠安县第十六中学高二数学第二学期期末达标检测试题含解析_第4页
2023年福建省泉州市惠安县第十六中学高二数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是().A.0.994 B.0.686 C.0.504 D.0.4962.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为()A.4 B.8 C.16 D.243.设复数满足(为虚数单位),则复数()A. B.C. D.4.设,则“”是“”的A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.已知,则下列结论中错误的是()A.B..C.D.6.即将毕业,4名同学与数学老师共5人站成一排照相,要求数学老师站中间,则不同的站法种数是A.120 B.96 C.36 D.247.已知定圆,,定点,动圆满足与外切且与内切,则的最大值为()A. B. C. D.8.已知,是双曲线的上、下两个焦点,的直线与双曲线的上下两支分别交于点,,若为等边三角形,则双曲线的渐近线方程为()A. B. C. D.9.“”是“圆:与圆:外切”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分条件也不必要条件10.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.若为假命题,则均为假命题C.对于命题:,使得,则:,均有D.“”是“”的充分不必要条件11.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是()A. B.C. D.12.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=()A.192 B.202 C.212 D.222二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过点,且它的一个方向向量为,则原点到直线的距离为______.14.已知点,,若直线上存在点,使得,则称该直线为“型直线”.给出下列直线:(1);(2);(3);(4)其中所有是“型直线”的序号为______.15.如图①,矩形的边,直角三角形的边,,沿把三角形折起,构成四棱锥,使得在平面内的射影落在线段上,如图②,则这个四棱锥的体积的最大值为__________.16.已知函数为自然对数的底数与的图象上存在关于轴对称的点,则实数的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.18.(12分)设函数.(1)当时,解不等式;(2)若关于的不等式恒成立,求实数的取值范围.19.(12分)已知,,.求与的夹角;若,,,,且与交于点,求.20.(12分)已知椭圆C:的离心率为,且过点.求椭圆的标准方程;设直线l经过点且与椭圆C交于不同的两点M,N试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.21.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.22.(10分)已知数列满足,(1)求,并猜想的通项公式;(2)用数学归纳法证明(1)中所得的猜想.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题中意思可知,当、元件至少有一个在工作,且元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率.【详解】由题意可知,该系统正常工作时,、元件至少有一个在工作,且元件在元件,当、元件至少有一个在工作时,其概率为,由独立事件的概率乘法公式可知,该系统正常工作的概率为,故选B.【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.2、B【解析】

根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,,棱锥的体积,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.3、A【解析】

利用复数的代数形式的乘除运算化简,求出数复数,即可得到答案.【详解】复数满足,则,所以复数.故选:A.【点睛】本题考查复数的模、共轭复数的概念,考查运算求解能力.4、B【解析】

根据绝对值不等式和三次不等式的解法得到解集,根据小范围可推大范围,大范围不能推小范围得到结果.【详解】解得到,解,得到,由则一定有;反之,则不一定有;故“”是“”的充分不必要条件.故答案为:B.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5、C【解析】试题分析:,当时,,单调递减,同理当时,单调递增,,显然不等式有正数解(如,(当然可以证明时,)),即存在,使,因此C错误.考点:存在性量词与全称量词,导数与函数的最值、函数的单调性.6、D【解析】分析:数学老师位置固定,只需要排学生的位置即可.详解:根据题意得到数学老师位置固定,其他4个学生位置任意,故方法种数有种,即24种.故答案为:D.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.7、A【解析】

将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【详解】定圆,,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为:故答案选A【点睛】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.8、D【解析】根据双曲线的定义,可得是等边三角形,即∴即

即又

0°即解得由此可得双曲线的渐近线方程为.故选D.【点睛】本题主要考查双曲线的定义和简单几何性质等知识,根据条件求出a,b的关系是解决本题的关键.9、B【解析】

由圆:与圆:外切可得,圆心到圆心的距离是求出的值,然后判断两个命题之间的关系。【详解】由圆:与圆:外切可得,圆心到圆心的距离是即可得所以“”是“圆:与圆:外切”的充分不必要条件。【点睛】本题考查了两个圆的位置关系及两个命题之间的关系,考查计算能力,转化思想。属于中档题。10、B【解析】

由原命题与逆否命题的关系即可判断A;由复合命题的真值表即可判断B;由特称命题的否定是全称命题即可判断C;根据充分必要条件的定义即可判断D;.【详解】A.命题:“若p则q”的逆否命题为:“若¬q则¬p”,故A正确;B.若p∧q为假命题,则p,q中至少有一个为假命题,故B错.C.由含有一个量词的命题的否定形式得,命题p:∃x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0,故C正确;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,即D正确故选:B.【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.11、C【解析】

求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【详解】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.【点睛】本题考查了椭圆与圆的综合,圆外任意一点到圆的最大距离是这个点到圆心的距离与圆的半径之和,根据圆外点在椭圆上,即可列出椭圆上一点到圆心的距离的解析式,结合函数最值,即可求得椭圆上一点到圆上一点的最大值.12、C【解析】∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;

右边的底数依次分别为3,6,10,(注意:这里,),

∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,

右边的底数为,又左边为立方和,右边为平方的形式,

故有,故选C.点睛:本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出直线的方程,然后利用点到直线的距离公式可求出原点到直线的距离.【详解】由于直线的一个方向向量为,则直线的斜率为,所以,直线的方程为,即,因此,原点到直线的距离为.故答案为:.【点睛】本题考查点到直线距离的计算,同时也考查了直线方向向量的应用,解题时要根据题中条件得出直线的斜率,并写出直线的方程,考查计算能力,属于中等题.14、(1)(3)(4)【解析】

由题可得若则是在以,为焦点,的椭圆上.故“型直线”必与椭圆相交,再判断直线与椭圆是否相交即可.【详解】由题可得若则是在以,为焦点,的椭圆上.故“型直线”需与椭圆相交即可.易得.左右顶点为,上下顶点为对(1),过,满足条件对(2),设椭圆上的点,则到直线的距离,.若,则无解.故椭圆与直线不相交.故直线不满足.对(3),与椭圆显然相交,故满足.对(4),因为过,故与椭圆相交.故满足.故答案为:(1)(3)(4)【点睛】本题主要考查了椭圆的定义与新定义的问题,判断直线与椭圆的位置关系可设椭圆上的点求点与直线的距离,分析是否可以等于0即可.属于中等题型.15、【解析】

设,可得,.,由余弦定理以及同角三角函数的关系得,则,利用配方法可得结果.【详解】因为在矩形内的射影落在线段上,所以平面垂直于平面,因为,所以平面,,同理,设,则,.在中,,,所以,所以四棱锥的体积.因为,所以当,即时,体积取得最大值,最大值为,故答案为.【点睛】本题主要考查面面垂直的性质,余弦定理的应用以及锥体的体积公式,考查了配方法求最值,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是用空间点线面关系和平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.16、【解析】由题意可得:在区间上有解,即:在区间上有解,整理可得:在区间上有解,令,则,导函数在区间上单调递增,,则,,即的最小值是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)或.【解析】

(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.【详解】(Ⅰ)设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.所以,椭圆方程为.(Ⅱ)由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立,整理得,可得,代入得,进而直线的斜率,在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.18、(1);(2)或【解析】

(1)根据题意得到,分,,三种情况讨论,即可得出结果;(2)先由关于的不等式恒成立,得到恒成立,结合绝对值不等式的性质,即可求出结果.【详解】(1)当时,即为,当时,,解得;当时,,可得;当时,,解得,综上,原不等式的解集为;(2)关于的不等式恒成立,即为恒成立,由,可得,解得:或.【点睛】本题主要考查含绝对值不等式,通常需要用到分类讨论的思想,灵活运用分类讨论的思想处理,熟记绝对值不等式的性质即可,属于常考题型.19、;.【解析】

化简得到,再利用夹角公式得到答案.,根据向量关系化简得到,再平方得到得到答案.【详解】,.又,,,..又,.,,,,.【点睛】本题考查了向量的计算,将表示出来是解题的关键,意在考查学生对于向量公式的灵活运用和计算能力.20、(1);(2)见解析【解析】

由椭圆C:的离心率为,且过点,列方程给,求出,,由此能求出椭圆的标准方程;假设存在满足条件的点,设直线l的方程为,由,得,由此利用韦达定理、直线的斜率,结合已知条件能求出在x轴上存在点,使得直线QM与直线QN的斜率的和为定值1.【详解】椭圆C:的离心率为,且过点.,解得,,椭圆的标准方程为.假设存在满足条件的点,当直线l与x轴垂直时,它与椭圆只有一个交点,不满足题意,直线l的斜率k存在,设直线l的方程为,由,得,设,,则,,,要使对任意实数k,为定值,则只有,此时,,在x轴上存在点,使得直线QM与直线QN的斜率的和为定值1.【点睛】本题考查椭圆方程的求法,考查满足两直线的斜率和为定值的点是否存在的判断与求法,考查椭圆、直线方程、斜率、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论