




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.PeriodicanomaliesofthenonmetalsandposttransitionmetalsReluctanceoffourth-rownonmetalstoexhibitmaximumvalenceThereisadefinitetendencyforthenonmetalsoftheforth-row,As,Se,Br,tobeunstableintheirmaximumoxidationstate.Forexample,AsCl5aswellasAsBr5andAsI5isunknownalthoughbothPCl5andSbCl5exist.TheonlystablearsenicpentahalideisAsF5.
Inoxygengroupthesamephenomenonisencountered.
TheenthalpiesofformationofSF6,SeF6,andTeF6are–1210,-1030,and–1315kJmol-1,respectively.ThisindicatesthatcomparablebondenergiesforS-FandTe-FbondsaremorestablethanSe-Fbond.Thereluctanceofbrominetoaccepta+7oxidationstateiswell-known.Perbromicacid(HBrO4)andperbromateion(BrO4-)hadnotbeensynthesizedbefore1968.Theyareunstable.Thustheperbromateionisastrongeroxidizingagentthaneitherperchlorate(ClO4-)orperiodate(IO4-).(83SeO42-→BrO4-+e-)Indicatingthestabilityof4s2tosomeextent.(2)Theinert-s-paireffectAmongtheheavyposttransitionmetalsthereisadefinitereluctancetoexhibitthehighestpossibleoxidationstateorthegreatestcovalence,whichmeansthattheheavyelementsinCarbongroupusuallyshow+2oxidationstate(divalent,asGe2+,Sn2+,Pb2+)andBoronGroup+1oxidationstate(monovalent).Itispossibletopreparedivalentgermanium,tin,andleadcompounds.IncarbongroupTinhasastable+2oxidationstateinadditionto+4andforleadthe+2oxidationstateisfarmoreimportant.OtherexamplesarestableTl+andBi3+.Thesestableoxidationstates,twolessthanthehighestoxidationstatesoftheelements,haveledtothesuggestionthatthepairofselectronsisinertandonlythepelectronsareemployedinthebonding.Ithasalsobeensuggestedthattheunreactivityofmetallicmercury(Hg)isduetotheinert6s–pairelectrons,becausetheonlybondingelectronsofmercuryare6selectrons,whichresultsintheweakmetalbondandfurthermoretheliquidstateofHg.(3)AnomaliesofGroupsBoronandCarbonCarbongroupinvolvesatendencyforGetoresembleCmorethanSi.Someexamplesare:(i)Reductionofhalideswithzincandhydrochloricacid.GeresemblesCandSnresemblesSi.ZnR3C-X→R3C-HHClZnR3Si-X→NoR3Si-HHClZnR3Ge-X→R3Ge-HHClZnR3Sn-X→NoR3Sn-HHCl(ii)Reactionoforganolithiumcompoundswith(C6H5)3YH(Y=ElementofCarbonGroup).Triphenylmethaneandtriphenylgermanedifferintheirreactionwithorganolithiumcompoundsfromtriphenylsilaneandtriphenylstannane:φ3CH+LiR→LiCφ3+RHφ3SiH+LiR→φ3SiR+LiHφ3GeH+LiR→LiGeφ3+RHφ3SnH+LiR→φ3SnR+LiH(iii)BoronGroupTheelementsofBoronGroupshowsimilarpropertiesalthoughthedifferencesarenotsonoticeableasforCarbonGroup.Itmaybenotedthatthecovalentradiusgallium(Ga)appearstobeclosetothatofaluminum(Al):rGa=120pm,rAl=130pmThefirstionizationenergiesofthesetwoelementsaresurprisinglyclose:I1(Al)=578kJmol-1,I1(Ga)=579kJmol-1(Gaisjustafterthefull3d10,calledScandiumContractionsimilartoLanthanideContraction)InBoronGroup,thesumofthefirstthreeionizationenergiesshowsasimilartendencyasCarbonGroup:IonizationEnergy(kJmol-1) I1+I2+I3 I1+I2+I3+I4
B=6887 C=14282Al=5044 Si=9950Ga=5521Ge=10011In=5084 Sn=8994Tl=5439 Pb=8617(4s2and6s2pairsaremoreinert)(4)Loose-compactModelRelativisticEffectsAccordingtoEinstein’stheoryofrelativity,themassmofaparticleincreasesfromitsrestmassm0whenitsvelocityvapproachesthespeedoflight,c,andmisthengivenbytheequation:
m=m0/[1-(v/c)2]1/2Forahydrogenatom,theBohrmodeloftheatomleadstothevelocityoftheelectronbeingexpressedbytheequation:
v=Ze2/(2ε0h)=2.167×106m/s=1au(atomicunit)Comparewiththespeedoflight:c=2.998×108m/s=137auThemassof1selectronofHatomisclosetom0(m/m0=1.00003).However,foranatomwithatomicnumberZ,thevelocityof1selectronofthisatomreachesapproximatelyZau.e.g.Z=80,Hg,v/c=0.58,leadingtom=1.2m0
SincetheradiusoftheBohrorbitisgivenbytheequation:
r=(n2h2ε0)/(πmZe2)theincreaseinmresultsinanapproximately20%contractionoftheradiusofthe1s(n=1)orbital;thisiscalleddirectrelativisticcontraction.Othersorbitalsareaffectedinasimilarwayandasaconsequence,whenZishigh,sorbitalshavediminishedoverlapwithorbitalsofotheratoms.Adetailedtreatmentshowsthatporbitalsalsoundergoadirectrelativisticcontraction.Ontheotherhand,dorbitalsundergoanindirect
relativisticexpansion;asimilarargumentappliestoforbitals.Withincreasingnucleinumber1s2pairwillbegraduallyattractedtothenuclei.TheshieldingparameterontotheelectronsofthesecondshellwillbehigherthanthatexpectedbySlater’sRules.Thus,theseelectronsarein“loose”state.Thentheeffectivenuclearchargeontotheelectronsofthethirdshellincreasesandtheseelectronsarein“compact”state.Thiseffectextendsoutershellsonebyonealternatively.Loose-compacteffect
ForIA,IIAelementsPeriod234567Compact1s21s21s21s21s21s2Loose2s1-22s22p62s22p62s22p62s22p62s22p6Compact3s1-23s23p63s23p63s23p63s23p6LooseΔsmall4s1-24s24p64s24p64s24p6CompactΔbig5s1-25s25p65s25p6LooseΔsmall6s1-26s26P6CompactΔbig7s1-2ΔsmallCsandBaarethemostelectropositiveinIAandIIA,respectively.CsexhibitsthehighestatomicradiumamongtheknownatomsofPeriodicTable.MLiNaKRbCsI1/kJmol-1520496419403376Δ24
77
16
62χ0.980.930.820.820.79Δ
0.05
0.11
0.00
0.03r/pm156186231243265Δ30
45
12
22FortheotherelementsPeriod23456Compact1s21s21s21s21s2Loose2s22p1-62s22p62s22p62s22p62s22p6Compact3s23p1-63s23p63s23p63d103s23p63d10Loose3d104s24p64s24p64d104f14Compact4s24p1-64d105s25p6Loose5s25p1-65d10Compact6s26p1-6Therearetwoadditionaleffectsshouldbeconsidered,fortheneighboringshells:s2andd10
haveverysmallshieldingparameters.Therefore,weshouldconsiderthesumofthesethreeeffects.Forthes-andd-block(innerp6),nochanges.Fortheotherelements:PeriodShellL-Ceffects2ord10effectSum2 2s22p1-6Lweak C C3 3s23p1-6C L L*4 4s24p1-6C C C55s25p1-6L C L6 6s26p1-6Cstrong C C
4s2,6s2,inerts-paireffect*isrelativelyweakerthanthatofPeriod2and4ΔofI1orEA1show“big,small,big,small”trendfromPeriod2to6.Electronicconfigurationofd-block3dVd3s2Crd5s1Mnd5s2Fed6s2Cod7s2Nid8s24dNbd4s1Mod5s1Tcd5s2Rud7s1Rhd8s1Pdd10s05dTad3s2Wd4s2Red5s2Osd6s2Ird7s2Ptd9s14d-blockmetalshavemoreexceptioncomparedwith3dor5d-blockmetals.3dL,4sC;4dC,5sL;5dL,6sC (<d10)Theenergylevelgapbetween4dand5sisbigerwhichfavorsloweringthesumenrergy.ElementCuAgAuPeriod456Configuration3d104s14d105s15d106s1(n-1)d10LCLns1CLCOxidationstate+I,+II+I+I,+IIIAtomicRadium/pm127.8144.4144.2I1/kJmol-1745.5731890I2/kJmol-11957.920741980ThehighestorlowestvaluesofAginthegroupisascribedto“4d10compact,5sloose”→e.g.I1small,I2large1.4ConsiderationBasedonThermodynamicsandKineticsAgoodworkingknowledgeofthermodynamicsisinvaluabletoachemist.Theyareparticularlyinterestedinquantitativeexpressionsforthedrivingforceofchemicalreactions.Thedrivingforcecanbemeasuredintermsofthefreeenergychange(ΔG),theequilibriumconstant(K),thepotentialofthereaction(E),oracombinationofthechangesinheatcontent(ΔH)andentropy(ΔS).Therelationbetweenthesethermodynamicfunctions,anddefinitionsofsomeoftheterms,follow.ΔG=-nEF=-RTIn(K/Q)=ΔH-TΔSHerenisthenumberoffaradaysofelectricityinvolvedinthereaction,andQisthereactionquotient,ortheproductoftheactivitiesoftheresultingsubstancesdividedbytheproductoftheactivitiesofthereactingsubstances,eachactivityraisedtoapowerequaltothecoefficientofthesubstanceinthechemicalequation.aA+bB→cC+dDQ={(fC[C])c(fD[D])d}/{(fA[A])a(fB[B])b}where,a,b,c,anddarecoefficients.Theactivitiesofpuresolidandliquidsubstancesaretakentobeunity.Asafairapproximation,theactivityofagaseoussubstanceisthepartialpressureofthatsubstance,expressedinatmospheres.Forasubstanceinadiluteaqueoussolution,theactivityisroughlyequaltotheconcentration,expressedeitherasmolality(molesperkilogramofwater)ormolarity(molesperliterofsolution).Forconcentratedsolutions,theseapproximationscannotbeused;activitycoefficientdataarerequired.ItwillbenotedthattheequilibriumconstantKisthevalueofQatequilibrium.WhenQ=1(whichisthecasewhenallthereactantsandproductsareatunitactivity),thethermodynamicfunctionspossesstheir"standard"values:ΔG0=-nE0F=-RTInK=ΔH0-TΔS0Weusethermodynamicaldatatoconsidersyntheticproblem.
e.g.Letussupposethatwewishtoprepareperiodate(H3IO62-)byoxidizingiodate(IO3-)withsomeaqueousoxidizingagent.Wecanseethattheperiodate-iodatecouplehasapotentialof1.6Vinacidsolutionsandapotentialof0.7Vinbasicsolutions.H5IO6+H++2e=IO3-+3H2OE0=1.60VH3IO62-+2e=IO3-+3OH-E0=0.70V
Anyoxidizingagentwithareductionpotentialmorepositivethan1.6Vinacidsolutionsormorepositivethan0.7Vinbasicsolutionsisthermodynamicallycapableofoxidizingiodatetoperiodate.Inpractice,hypobromite(BrO-)orhypochlorite(ClO-)isusuallyused,becausetheseoxidizingagentsreactwithreasonablerapidityandarerelativelycheap.Eithermaybeconvenientlypreparedbydissolvingtheappropriatehalogeninanalkalinesolution:Ifweusehypochlorite(ClO-)asoxidizingagent,thereactionis:ClO-+IO3-+OH-+H2O=H3IO62-+Cl-E=0.19VTherefore,periodate(H3IO62-)canbepreparedbyoxidizingiodate(IO3-)withhypochlorite(ClO-)inanalkalinesolution.Whenweworkwiththermodynamicdata,itisalwaysimportanttokeepinmindthatthermodynamicscantelluswhetherareactioniscapableoftakingplace,butitcannottellusthereactionrate.Thus,areactionmaybethermodynamicallyfavored(ΔG<O)andyetproceedextremelyslowly.Therefore,bothkineticsandthermodynamicsmustbeconsidered.AmmoniaSynthesis
TheHaberprocessfortheindustrialsynthesisofammoniaisawell-knownapplicationofbothequilibriumandkineticconsiderationsinsynthesis.Hydrogenandnitrogenreactathightemperaturesandpressuresandinthepresenceofanironcatalystaccordingtothereversiblereaction:N2(g)+3H2(g)=2NH3(g)
TheeffectoftemperatureandpressureontheequilibriumisgivenintheTable.Theformationofammoniaisobviouslyfavoredbybothlowtemperaturesandhighpressures,butifthetemperaturefallsmuchbelow400℃,therateofthecatalyzedreactionistooslowforeconomicalproduction.Ontheotherhand,ifthetemperatureistoohigh,theequilibriumpressureofammoniaistoolowforsatisfactoryyields.Inpractice,pressuresaround1000atmandtemperaturesaround500℃areemployed.DiamondSynthesis
Diamondisthermodynamicallyunstablewithrespecttographiteat1atmpressureatalltemperatures.Fortheprocess,Cgraphite→Cdiamond
ΔG0=692calmole-1at25℃andΔG0=2400calmole-1at1200℃Inasmuchasthemolarvolumesofdiamondandgraphiteare3.42and5.34cm3,respectively,hencethedensitiesofdiamondandgraphiteare3.541and2.266gcm-3.Therefore,thedrivingforcefortheconversionisincreasedbyincreasingthepressure.
AplotofthepressurerequiredtomakeΔG=0againsttemperatureisgivenintheFigure.
Forthereactiontoproceedatanappreciablerate,itisnecessarytogototemperaturesaboveapproximately1800K.Therefore,asshownintheFigure,pressuregreaterthanabout60,000atmisrequiredinthesynthesis.Anotherimportantfeatureistheuseofasolventtopermittakingapartthegraphitelatticeatom-by-atomandbuildingtheatomsintothediamondlattice.Inthefirstsynthesisofadiamond,FeSwasthesolvent;thetemperaturewasabout1920K;thepressurewasabout90,000atm,andthereactiontimewas3min.
Inrecentyears,anumberofinvestigatorshavesucceededingrowingdiamondsatlowpressuresbypyrolyzingthevaporsoforganiccompounds,usingChemicalVaporDeposition(CVD)method.Oneprocessinvolvespassingmethane,atapressurearound0.2mmHg(mercury),overadiamondseedcrystalatabout1050℃.Afterdepositionofcarbonontheseedcrystal,anygraphitethathasformediseliminatedbyreactionwithhydrogenat1033℃and50atm.Therefore,theequilibriumismovedtowardthedirectionofdiamondformation.(NonequilibriumThermodynamics)1.5AcidsandBasesChemicalreactionsincludethreetypesofreactions:RedoxreactionCoordinationreactionDoubledecompositionreaction(containingAcid-basereaction)Onthestandofchemicalbond,achemicalreactioninvolvestheformationand/orcrackofoneormorebonds;Onthestandofenergy,achemicalreactionisaccompaniedwithabsorptionorreleaseofenergy;Onthestandofchargedistribution,chargedensitiesofreactantsandproductswillre-distributealongtheenergy-favoredpath.
Duringredoxreaction,chargestransferamongtheatomsandtheoxidationstatesoftheatomschange;Duringcoordinationreaction,chargestransferamongthecentralatom/ionandligands;Duringdoubledecompositionreaction,chargesredistributeortransferamongthereactantsbuttheoxidationstatesremainunchanged.
Accordingtosomedefinitionsbelow,thesethreetypesofreactionscanbesimplybelongtoacid-basereaction.1.5.1Definitionsofacidsandbases
Therearemanydifferentdefinitionsofacidsandbases.Thefirstrecognitionoftheexistenceoftheclassesofcompoundwenowidentifyasacidsandbaseswerebasedontasteandfeel:acidsweresourandbasesfeltsoapy.Hereweintroducesomemoderndefinitions.1.Brönsted-LowrydefinitionIn1923,J.N.BrönstedandT.M.Lowryindependentlysuggestedthatacidsbedefinedasprotondonorsandbasesasprotonacceptors.
AcidBaseH3O+
+OH-
2H2ONH4+
+NH2-
2NH3H3SO4+
+HSO4-
2H2SO4NH4+
+S2-
NH3+HS-Thisdefinitionalsointroducedtheconceptofconjugateacidsandbasesanddescribedthereactionsasoccurringbetweenastrongeracidandbasetoformaweakeracidandbase:H3O++NO2-
→H2O+HNO2acid1base2base1acid2Conjugateacid-basepairs:AcidBase
H3O+H2O
HNO2NO2-
H2OistheconjugatebaseofH3O+andHNO2istheconjugateacidof
NO2-.Thedirectionofthereactionalwaysfavorstheformationofweakeracidsorbasesthanthereactants.H3O+isastrongeracidthanHNO2andNO2-isastrongerbasethanH2O.2.Lux-FlooddefinitionIncontrasttotheBrönsted-Lowrydefinitionthatemphasizestheprotonastheprincipalspeciesinacid-basereactions,thedefinitionproposedbyLuxandextendedbyFlooddescribesacid-basebehaviorintermsoftheoxideion(O2-).Acidsaredefinedasoxideionacceptorsandbaseasoxideiondonors.Thisconceptcanbeadvancedtotreatnonprotonicsystems,suchasthesystemofmoltenoxide.
AcidBase
SiO2
+CaO
CaSiO3
H2O+CaO
Ca(OH)2
TiO2
+BaCO3
BaTiO3+CO2O2-
3.IonotropicdefinitionAccordingtothisdefinition,theacidisdefinedasacharacteristiccationdonorandthebaseasacharacteristiccationacceptor.Brönsted-Lowrydefinitionisoneexamplethatdefinesproton(H+)asthecharacteristiccation.Andalso,theacidcanbedefinedasacharacteristicanionacceptorandthebaseasacharacteristicaniondonor.Lux-Flooddefinitionisoneexamplethatdefinesoxideion(O2-)asthecharacteristicanion.4.Solventsystemdefinition
Manysolventsautoionizewiththeformationofacationicandananionicspeciesasdoeswater:2H2O↔
H3O++OH-2NH3
↔NH4++NH2-2H2SO4↔H3SO4++HSO4-2OPCl3
↔
OPCl2++OPCl4-2BrF3
↔BrF2++BrF4-Forthetreatmentofacid-basereactions,itisconvenienttodefineanacidasaspeciesthatincreasestheconcentrationofthecharacteristiccationofthesolventandabaseasaspeciesthatincreasestheconcentrationofthecharacteristicanion.
e.g.Inwater:HCl(g)+H2O(l)H3O+(aq)+Cl-(aq)
AcidBaseHClincreasestheconcentrationofthecharacteristiccation,[H3O+],inwater,thusHClisanacid.NaOH(g)+xH2O(l)Na(H2O)x+(aq)+OH-(aq)
BaseAcidNaOHisabase.InPOCl3FeCl3(s)+POCl3(l)→POCl2+(sol)+FeCl4-(sol)AcidBaseSOCl2(l)+POCl3(l)
→POCl4-(sol)+SOCl+(sol)BaseAcid(亚硫酰氯)InBrF3SbF5
+BrF3
→BrF2++SbF6-AcidBaseKFinBrF3F-+BrF3→BrF4-
BaseAcidClassifictionofsolvents
ProticSolventsSolventAcidCationBaseAnionpKion(25oC)B.P.(oC)H2SO4H3SO4+HSO4-3.4(10oC)33.0HFH2F+HF2-~12(0oC)19.5H2OH3O+OH-14100CH3COOHCH3COOH2+CH3COO-14.45118.2CH3OHCH3OH2+CH3O-18.964.7NH3NH4+NH2-27-33.4CH3CNCH3CNH+CH2CN-28.681ThepKionistheautodissociationconstantforthepuresolvent,indicatingthat,amongtheseacids,H2SO4dissociatesmuchmorereadilythananyoftheothers,andthatCH3CNisleastlikelytoautodissociate.Theboilingpointsaregiventoprovideanestimateoftheconditionsunderwhicheachsolventmightbeused.AproticSolventsNonpolar:C6H6,CO2,CCl4,etc.Polar:BrF3,IF5,N2O4,SO2,C5H5N,(CH3)2SO,OPCl3,CH3(OCH2CH2)2OCH3,COCl2,
SOCl2,etc.N2O4↔NO++NO3-2SO2↔SO2++SO32-
SOCl2↔SOCl++Cl-
5.LewisdefinitionIn1923,G.N.Lewisproposedadefinitionofacid-basebehaviorintermsofelectron-pairdonationandacceptance.TheLewisdefinitionisperhapsthemostwidelyusedofallbecauseofitssimplicityandwideapplicability,especiallyinthefieldoforganicreactions.Lewisdefinedabaseasanelectron-pairdonorandanacidasanelectron-pairacceptor.Inadditiontoallofthereactionsdiscussedabove,theLewisdefinitionincludesreactionsinwhichnoionsareformedandnohydroniumionsorotherionsaretransferred:BaseAcid
R3N+BF3
→R3N-BF
4CO+Ni→Ni(CO)4
2L+SnCl4→SnCl4L2
2NH3+Ag+
→Ag(NH3)2+CpGaI+Cp2CaII→CpGa-CaCp26.UsanovichdefinitionThecompletedefinitionisasfollows:Anacidisanychemicalspecieswhichreactswithbase,givesupcations,oracceptsanionsorelectrons,orcombineswithanionsand,conversely,abaseisanychemicalspecieswhichreactswithacids,giveupanionsorelectrons,orcombineswithcations.ThisdefinitionsimplyincludesallLewisacid-basereactionsplusredoxreactionswhichmayconsistofcompletetransferofoneormoreelectrons.OH-+O=C=O→HOCO2-
e-(sol)+Na(sol)→Na-(sol)
BaseAcidThesedefinitionscanbesummarizedasageneraldefinition,whichdefinesanacidasdonatingapositivespeciesoracceptinganegativespeciesandabaseasdonatinganegativespeciesoracceptingapositivespecies.
AcidBaseDonorH+,M+O2-,eore2,OH-,X-AcceptorO2-,eore2,OH-,X-H+,M+1.5.2Solventleveling
Becausesolventsmaybeacidsorbases,forexample,weakacidsinwatermayappearstronginabasicsolventandsimilarly,weakbasesinwatermayappearstronginanacidicsolvent.1.Discriminationinwater
AnyacidstrongerthanH3O+inwatergivesaprotontoH2O(water)andformsH3O+.ThismeansthatnoacidisstrongerthanH3O+inwater.Forexample,inwaterwecannotknowwhichisthestrongeracidbetweenHBrandHI.Therefore,waterissaidtohavealevelingeffectthatbringsallstrongeracidsdowntotheacidityofH3O+.However,inanacidicsolventsuchasaceticacid(CH3COOH),bothoftheacidsbehaveasweakacidsandtheirstrengthcanbedistinguished.ItisfoundHIisstrongerthanHBr.Similarly,theOH-isthestrongestbaseinwaterthatanybasestrongerthantheOH-reactswithwat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全与环境的协调发展注册安全工程师试题及答案
- 细胞应激反应机制分析试题及答案
- CPSM考试对个人能力评估的影响及试题及答案
- 2024年CPMM实践的试题及答案小窍门
- 运输市场环境变化分析试题与答案
- 中班防溺水课件下载
- 2025年羧甲淀粉钠合作协议书
- 2024年CPSM考试知识回顾试题及答案
- 保洁防控培训课件
- CPMM知识检验试题及答案总结
- 河南省郑州市管城区2024-2025学年级九年级下学期第一次模拟数学试题(原卷版+解析版)
- 隔音涂料施工方案
- 儿童各年龄期保健儿童保健学课件
- 苏教版数学一年级下册(2024)第七单元观察物体(一)综合素养测评 A 卷(含答案)
- 2025年中考英语第一次模拟试卷01(广州专用)(原卷版)
- 《石油工程事故案例分析》课件
- 甘肃卷2024年高考真题化学试题(含答案)
- 2024中国建筑第七工程局有限公司招聘笔试参考题库附带答案详解
- 初级咖啡师资格理论考试题及答案
- 招标代理机构选取突发情况应急处理预案
- 伦理审查表(一式三份)
评论
0/150
提交评论