版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京顺义区第八中学2022年高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=log(x2+)﹣||,则使得f(x+1)<f(2x﹣1)的x的范围是()A.(0,2) B.(﹣∞,0) C.(﹣∞,0)∪(2,+∞) D.(2,+∞)参考答案:A【考点】对数函数的图象与性质.【分析】根据函数的单调性和奇偶性将问题转化为|x+1|>|2x﹣1|,解出即可.【解答】解:x>0时,f(x)=log(x2+)﹣是减函数,x<0时,f(x)=log(x2+)+是增函数,且f(﹣x)=f(x)是偶函数,若f(x+1)<f(2x﹣1),则|x+1|>|2x﹣1|,解得:0<x<2,故选:A.2.已知向量,其中,,且,则向量和的夹角是(
)A.
B.
C.
D.参考答案:A3.已知向量,,则的充要条件是(
)A.
B.
C.
D.参考答案:4.已知函数,其中e为自然对数的底数,若存在实数x0,使得成立,则实数a的值为A.-ln2-1
B.ln2-1
C.-ln2
D.ln2参考答案:A
5.平行四边形中,,,,,则的值为(
)A.10
B.12
C.
14
D.16参考答案:D因为平行四边形中,,,,,所以,,,故选D.
6.某程序框图如图所示,若输出的S=120,则判断框内应为
A.
B.
C.
D.参考答案:B7.已知定义在R上的奇函数f(x),满足f(x﹣4)=﹣f(x)且在区间[0,2]上是增函数,则()A.f(﹣25)<f(11)<f(80) B.f(80)<f(11)<f(﹣25) C.f(11)<f(80)<f(﹣25) D.f(﹣25)<f(80)<f(11)参考答案:D【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系进行转化求解即可.【解答】解:∵f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4)=f(x),即函数的周期是8,则f(11)=f(3)=﹣f(3﹣4)=﹣f(﹣1)=f(1),f(80)=f(0),f(﹣25)=f(﹣1),∵f(x)是奇函数,且在区间[0,2]上是增函数,∴f(x)在区间[﹣2,2]上是增函数,∴f(﹣1)<f(0)<f(1),即f(﹣25)<f(80)<f(11),故选:D【点评】本题主要考查函数值的大小比较,根据函数的奇偶性和单调性之间的关系进行转化是解决本题的关键.8.方程有且仅有两个不同零点,则的值为
A.
B.
C.
D.
不确定
参考答案:C9.函数f(x)=Asin(ωx+φ)(A>0,|φ|<)其中的图象如图所示,为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位参考答案:D考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;图表型;转化思想;数形结合法;三角函数的图像与性质.分析:根据图象求出φ的值,再由“左加右减”法则判断出函数图象平移的方向和单位长度.解:∵由函数图象可得:A的值为1,周期T=4×(﹣)=π,∴ω===2,又函数的图象的第二个点是(,0),∴2×+φ=π,于是φ=,则f(x)=sin(2x+)=sin[2(x+)],∵g(x)=cos(2x﹣)=sin2x,∴为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象向右平移个单位即可.故选:D.【点评】本题主要考查了三角函数的函数图象,根据函数图象求解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,注意应用正弦函数图象的关键点进行求解,考查了读图能力和图象变换法则,属于中档题.10.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为(
)A.B.
C.D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围
.参考答案:【知识点】圆的标准方程;指数函数的单调性与特殊点.B6
H3【答案解析】[].
解析:函数f(x)=mx+1+1的图象恒过点(﹣1,2),代入直线2ax﹣by+14=0可得﹣2a﹣2b+14=0,即a+b=7.∵定点始终落在圆(x﹣a+1)2+(y+b﹣2)2=25的内部或圆上,∴a2+b2≤25设=t,则b=at,代入a+b=7,∴a=代入a2+b2≤25可得,∴12t2﹣25t+12≤0,∴.故答案为:[].【思路点拨】求出函数恒过的定点,代入直线方程,及圆的方程,再换元,转化为t的不等式,即可求出的取值范围.12.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=﹣,则线段PF的长为.参考答案:6【考点】抛物线的简单性质.【分析】先根据抛物线方程求出焦点坐标和准线方程,根据直线AF的斜率得到AF方程,与准线方程联立,解出A点坐标,因为PA垂直准线l,所以P点与A点纵坐标相同,再代入抛物线方程求P点横坐标,利用抛物线的定义就可求出PF长.【解答】解:∵抛物线方程为y2=6x,∴焦点F(1.5,0),准线l方程为x=﹣1.5,∵直线AF的斜率为﹣,直线AF的方程为y=﹣(x﹣1.5),当x=﹣1.5时,y=3,由可得A点坐标为(﹣1.5,3)∵PA⊥l,A为垂足,∴P点纵坐标为3,代入抛物线方程,得P点坐标为(4.5,3),∴|PF|=|PA|=4.5﹣(﹣1.5)=6.故答案为6.13.函数的图像在点处的切线的倾斜角为________.参考答案:试题分析:由题意有,,则,则切线的倾斜角为.考点:1.导数的几何意义;2.斜率的几何意义.14.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为
辆.
参考答案:7615.函数零点的个数为
.参考答案:416.用数学归纳法证明时,由的假设到证明时,等式左边应添加的式子是(
)A、
B、
C、
D、参考答案:B略17.在平面直角坐标系中,点是第一象限内曲线上的一个动点,点处的切线与两个坐标轴交于两点,则的面积的最小值为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤19.(本小题12分)为响应低碳绿色出行,某市推出‘’新能源分时租赁汽车‘’,其中一款新能源分时租赁汽车,每次租车收费得标准由以下两部分组成:(1)根据行驶里程数按1元/公里计费;(2)当租车时间不超过40分钟时,按0.12元/分钟计费;当租车时间超过40分钟时,超出的部分按0.20元/分钟计费;(3)租车时间不足1分钟,按1分钟计算.已知张先生从家里到公司的距离为15公里,每天租用该款汽车上下班各一次,且每次租车时间t∈[20,60](单位:分钟).由于堵车,红绿灯等因素,每次路上租车时间t是一个随即变量.现统计了他50次路上租车时间,整理后得到下表:租车时间t(分钟)[20,30](30,40](40,50](50,60]频数2182010
将上述租车时间的频率视为概率.(1)写出张先生一次租车费用y(元)与租车时间t(分钟)的函数关系式;(2)公司规定,员工上下班可以免费乘坐公司接送车,若不乘坐公司接送车的每月(按22天计算)给800元车补.从经济收入的角度分析,张先生上下班应该选择公司接送车,还是租用该款新能源汽车?参考答案:19.(2017?南宁一模)已知F1(﹣c,0)、F2(c、0)分别是椭圆G:+=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.参考答案:【考点】椭圆的简单性质.【分析】(1)根据椭圆的定义,求得丨PF1丨=a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2﹣c2=4,即可求得椭圆方程;(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.【解答】解:(1)由椭圆的定义可知:|PF1|+|PF2|=2a.由|PF1|﹣|PF2|=a.∴丨PF1丨=a=3|PF2|,则=3,化简得:c2﹣5c+6=0,由c<a<3,∴c=2,则丨PF1丨=3=a,则a=2,b2=a2﹣c2=4,∴椭圆的标准方程为:;(2)由题意可知,直线l不过原点,设A(x1,x2),B(x2,y2),①当直线l⊥x轴,直线l的方程x=m,(m≠0),且﹣2<m<2,则x1=m,y1=,x2=m,y2=﹣,由⊥,∴x1x2+y1y2=0,即m2﹣(4﹣)=0,解得:m=±,故直线l的方程为x=±,∴原点O到直线l的距离d=,②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,则,消去y整理得:(1+2k2)x2+4knx+2n2﹣8=0,x1+x2=﹣,x1x2=,则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=,由⊥,∴x1x2+y1y2=0,故+=0,整理得:3n2﹣8k2﹣8=0,即3n2=8k2+8,①则原点O到直线l的距离d=,∴d2=()2==,②将①代入②,则d2==,∴d=,综上可知:点O到直线l的距离为定值.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,点到直线的距离公式,考查计算能力,属于中档题.20.(14分)如图,在直三棱柱中,
,点为的中点
(Ⅰ)求证;(Ⅱ)求证;(Ⅲ)求异面直线与所成角的余弦值参考答案:解析:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1;(II)设CB1与C1B的交点为E,连结DE,∵D是AB的中点,E是BC1的中点,∴DE//AC1,∵DE平面CDB1,AC1平面CDB1,∴AC1//平面CDB1;(III)∵DE//AC1,∴∠CED为AC1与B1C所成的角,在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,∴,∴异面直线AC1与B1C所成角的余弦值.解法二:∵直三棱锥底面三边长,两两垂直如图建立坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)
(Ⅰ),(Ⅱ)设与的交点为E,则E(0,2,2)
(Ⅲ)
∴异面直线与所成角的余弦值为21.(本小题满分13分)某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).(I)将S表示为的函数;(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.参考答案:(Ⅰ)如图,BM=AOsinθ=100sinθ,AB=MO+AOcosθ=100+100cosθ,θ∈(0,π).
……3分则S=MB·AB=×100sinθ×(100+100cosθ)=5000(sinθ+sinθcosθ),θ∈(0,π).……6分(Ⅱ)S′=5000(2cos2θ+cosθ-1)=5000(2cosθ-1)(cosθ+1).令S′=0,得cosθ=或cosθ=-1(舍去),此时θ=.
…………8分当θ变化时,S′,S的变化情况如下表:θS′+0-S极大值所以,当θ=时,S取得最大值Smax=3750m2,此时AB=150m,即点A到北京路一边的距离为150m.
…………13分22.改革开放以来,我国农村7亿多贫困人口摆脱贫困,贫困发生率由1978年的下降到2018年底的,创造了人类减贫史上的中国奇迹,为全球减贫事业贡献了中国智慧和中国方案.“贫困发生率”是指低于贫困线的人口占全体人口的比例.2012年至2018年我国贫困发生率的数据如表:年份()201220132014201520162
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可使用合同(图书出版)
- 2024中国建材集团总部招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国化学工程重型机械化限公司招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度企业设备进口与代理销售合同
- 2024年度瓷砖供应商合同5篇
- 《伟大的悲剧》课件
- 柏城站12月业务考试
- 电脑印刷第二单元(多选)
- 《钢结构规范新》课件
- 2024年度虚拟现实内容制作与体验合作合同
- 金属制品的回收与再利用
- 专题05-因式分解(历年真题)-2019-2020学年上海七年级数学上册期末专题复习(学生版)
- 窝沟封闭与龋病预防宣传
- 安全生产管理制度-普货运输
- 广西壮族自治区房屋建筑和市政工程监理招标文件范本(2020年版)
- 河北省石家庄市第四十中学2024-2025学年七年级上学期期中语文试题
- 2024-2030年中国地热能市场经济效益及发展前景展望研究报告
- 病句的辨析与修改(解析版)-2025年中考语文复习专练
- 艾滋病反歧视培训
- 公务用车车辆安全培训课件
- (5篇)2024年秋国开《形势与政策》大作业:中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么?【附答案】
评论
0/150
提交评论