2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析_第1页
2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析_第2页
2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析_第3页
2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析_第4页
2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年山西省长治市长子县色头中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(2014?湖北模拟)已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=?,则a=()A.﹣6或﹣2 B.﹣6 C.2或﹣6 D.﹣2参考答案:A【考点】交集及其运算.

【专题】集合.【分析】集合M表示y﹣3=3(x﹣2)上除去(2,3)的点集,集合N表示恒过(﹣1,0)的直线方程,根据两集合的交集为空集,求出a的值即可.【解答】解:集合M表示y﹣3=3(x﹣2),除去(2,3)的直线上的点集;集合N中的方程变形得:a(x+1)+2y=0,表示恒过(﹣1,0)的直线方程,∵M∩N=?,∴若两直线不平行,则有直线ax+2y+a=0过(2,3),将x=2,y=3代入直线方程得:2a+6+a=0,即a=﹣2;若两直线平行,则有﹣=3,即a=﹣6,综上,a=﹣6或﹣2.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.某流程图如图所示,现输入如下四个函数,则可以输出的函数是

()A.

B.C.D.参考答案:C略3.用反证法证明命题“若则、全为0”(、),其反设正确的是(

)A.、至少有一个为0B.、至少有一个不为0C.、全不为0D.、中只有一个为0参考答案:B略4.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()A.f(x)=x3 B.f(x)=x C.f(x)=3x D.f(x)=()x参考答案:C【考点】函数单调性的判断与证明.【分析】可先设f(x)为指数函数,并给出证明,再根据指数函数单调性的要求,得出C选项符合题意.【解答】解:指数函数满足条件“f(x+y)=f(x)f(y)”,验证如下:设f(x)=ax,则f(x+y)=ax+y,而f(x)f(y)=ax?ay=ax+y,所以,f(x+y)=f(x)f(y),再根据题意,要使f(x)单调递增,只需满足a>1即可,参考各选项可知,f(x)=3x,即为指数函数,又为增函数,故选:C.5.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0参考答案:A【考点】双曲线的简单性质.【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.6.已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m是(

)A.8 B.6 C.4 D.2参考答案:A【考点】等差数列的性质.【专题】计算题.【分析】根据等差中项的性质可知a3+a6+a10+a13=4a8求得a8,进而可知a8=am求得m的值.【解答】解:a3+a6+a10+a13=4a8=32∴a8=8∵am=8∴m=8故选A【点评】本题主要考查了等差中项的性质.属基础题.7.已知一组数据…的平均数,方差,则数据,,…的平均数和标准差分别为(

)A.15,36

B.22,6

C.15,6

D.22,36参考答案:B8.如图是解决数学问题的思维过程的流程图:图中①、②两条流程线与“推理与证明”中的思维方法相匹配是(

) A.①﹣分析法,②﹣综合法 B.①﹣综合法,②﹣分析法 C.①﹣综合法,②﹣反证法 D.①﹣分析法,②﹣反证法参考答案:B考点:分析法和综合法.专题:证明题;推理和证明.分析:根据综合法和分析法的定义,可知由已知到可知进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,进而得到答案.解答: 解:根据已知可得该结构图为证明方法的结构图:∵由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线与“推理与证明”中的思维方法为:①﹣综合法,②﹣分析法,故选:B.点评:本题以结构图为载体,考查了证明方法的定义,正确理解综合法和分析法的定义,是解答的关键.9.设点P对应的复数为-3+3i,以原点为极点,实轴的正半轴为极轴建立极坐标系,则点P的极坐标为()A. B. C. D.参考答案:A分析:先求出点P的直角坐标,P到原点的距离r,根据点P的位置和极角的定义求出极角,从而得到点P的极坐标.详解:点P对应的复数为,则点P的直角坐标为,点P到原点的距离,且点P第二象限的平分线上,故极角等于,故点P的极坐标为,故选:A.点睛:本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P的极角是解题的难点.10.(5分)(2015?西宁校级模拟)正项等比数列{an}满足:a3=a2+2a1,若存在am,an,使得am?an=16a12,则的最小值为()A.2 B.16 C. D.参考答案:C【考点】等差数列的性质;等比数列的通项公式.【专题】综合题;等差数列与等比数列.【分析】正项等比数列{an}满足:a3=a2+2a1,知q=2,由存在两项am,an,使得aman=16a12,知m+n=6,由此问题得以解决.【解答】解:∵正项等比数列{an}满足:a3=a2+2a1,∴a1q2=a1q+2a1,即:q2=q+2,解得q=﹣1(舍),或q=2,∵存在am,an,使得aman=16a12,∴a12?2m+n﹣2=16a12,∴m+n=6,∴=(m+n)()=(10++)≥(10+2)=∴的最小值为.故选:C.【点评】本题考查等比数列的通项公式的应用,解题时要认真审题,仔细解答.注意不等式也是高考的热点,尤其是均值不等式和一元二次不等式的考查,两者都兼顾到了.二、填空题:本大题共7小题,每小题4分,共28分11.若变量x,y满足约束条件且z=2x+y的最大值和最小值分别为m和n,则m-n等于 参考答案:612.已知直线

若,则实数

;若,则实数

参考答案:

13.已知正方体ABCD-A1B1C1D1中,,异面直线AE与BD1所成角的余弦值是

;若,则x=

.参考答案:,如图建立空间坐标系,设正方体棱长为4易得:,,,∴,∴异面直线与所成角的余弦值是由可得:即,∴故答案为:,

14.过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A,B两点(点A在y轴左侧),则=.参考答案:3【考点】抛物线的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得xA+xB和xAxB的表达式,进而可求得xAxB=﹣()2,整理后两边同除以xA2得关于的一元二次方程,求得的值,进而求得.【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知xA<0,xB>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴xA+xB=p,xA?xB=﹣p2,∴xAxB=﹣p2=﹣()2=﹣(xA2+xB2+2xAxB)∴3xA2+3xB2+10xAxB=0两边同除以xA2(xA2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵xA+xB=p>0,∴xA>﹣xB,∴<﹣1,∴=﹣=3.故答案为:3【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.15.直线圆和圆的位置关系是

)A.相离 B.内切

C.外切 D.

相交参考答案:D略16.命题“”的否定是___________参考答案:略17.命题“若ab=0,则a=0或b=0”的逆否命题是,它是命题(填“真”或“假”).参考答案:若a≠0且b≠0,则ab≠0,真命题。考点:四种命题的真假关系.专题:规律型.分析:将原命题的条件、结论否定,并交换可得:“若ab=0,则a=0或b=0”的逆否命题,根据命题的等价性,可知逆否命题为真.解答:解:将原命题的条件、结论否定,并交换可得:“若ab=0,则a=0或b=0”的逆否命题是若a≠0且b≠0,则ab≠0∵原命题若ab=0,则a=0或b=0”为真命题∴根据命题的等价性,可知逆否命题为真故答案为:若a≠0且b≠0,则ab≠0,真命题点评:本题的考点是四种命题的真假关系,考查原命题的逆否命题,考查命题的真假判断,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)设为取出的4个球中红球的个数,求的分布列参考答案:略19.(12分)(2015?开封模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(Ⅰ)求角A的大小;(Ⅱ)若b=5,sinBsinC=,求△ABC的面积S.参考答案:【考点】两角和与差的正弦函数;正弦定理.【专题】解三角形.【分析】(I)化简已知等式可得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,即可解得cosA的值,结合范围0<A<π,即可求得A的值.(II)又由正弦定理,得?sin2A═.由余弦定理a2=b2+c2﹣2bccosA,又b=5,即可解得c的值,由三角形面积公式即可得解.【解答】解:(I)由3cosBcosC+2=3sinBsinC+2cos2A,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0.﹣﹣﹣﹣(2分)解得cosA=或cosA=﹣2(舍去).﹣﹣﹣﹣(4分)因为0<A<π,所以A=.﹣﹣﹣﹣﹣(6分)(II)又由正弦定理,得sinBsinC=sinA?sinA=?sin2A═.﹣﹣﹣(8分)解得:bc=,由余弦定理,得a2=b2+c2﹣2bccosA,又b=5,所以c=4或c=﹣﹣﹣﹣(10分)所以可得:S=bcsinA=bc?=bc=5或S=﹣﹣﹣﹣(12分)【点评】本题主要考查了正弦定理,余弦定理,两角和与差的正弦函数公式,三角形面积公式的应用,属于基本知识的考查.23.(本题满分10分)已知抛物线与直线相切于点A(1,1).(1)求的解析式;(2)若对任意,不等式恒成立,求实数的取值范围.参考答案:23.(1)与直线相切于点A(1,1)且由两式联立的,得出,(2)设=,要使对任意,不等式恒成立,即恒成立,只需,得出的范围略21.设和是函数的两个极值点.(1)求a,b的值(2)求的单调区间.参考答案:解:(1),由已知可得,.解得(2)由(1)知当时,;当时,.因此的单调增区间是

的单调减区间是.略22.(本小题满分10分)在中,角的对边分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论