版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市武穴南泉乡雨山中学2021年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合I={x∈Z|﹣3<x<3},A={﹣2,0,1},B={﹣1,0,1,2},则(?IA)∩B等于()A.{﹣1} B.{2} C.{﹣1,2} D.{﹣1,0,1,2}参考答案:C【考点】交、并、补集的混合运算.【分析】化简集合I,根据补集与交集的定义写出计算结果即可.【解答】解:集合I={x∈Z|﹣3<x<3}={﹣2,﹣1,0,1,2},A={﹣2,0,1},B={﹣1,0,1,2},则?IA={﹣1,2},所以(?IA)∩B={﹣1,2}.故选:C.2.已知等腰三角形一个底角的正弦为,那么这个三角形顶角的正弦值
(
)A.
B.
C.
D.参考答案:C略3.在△ABC中,若AB=,AC=5,且cosC=,则BC=A.4
B.5 C.4或5 D.参考答案:C4.已知点A(0,1),B(3,2),向量,则向量=()A.(﹣7,﹣4) B.(7,4) C.(﹣1,4) D.(1,4)参考答案:A【考点】9J:平面向量的坐标运算.【分析】利用向量=即可得出.【解答】解:向量==(﹣3,﹣1)+(﹣4,﹣3)=(﹣7,﹣4).故选:A.5.指数函数y=ax的图像经过点(2,16)则a的值是
(
)A.
B.
C.2
D.4参考答案:D略6.已知正实数a,b,c,d满足,则下列不等式不正确的是(
)A.
B.
C.
D.参考答案:D7.已知函数的定义域为,值域为,则等于(
)A. B. C.5 D.6参考答案:A8.已知a,b,c∈R,那么下列命题中正确的是
()A.若a>b,则ac2>bc2B.若,则a>bC.若a3>b3且ab<0,则D.若a2>b2且ab>0,则参考答案:C【分析】根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【点睛】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.9.(
)A.
B.
C.
D.参考答案:A略10.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”。已知直线,,和圆C:的位置关系是“平行相交”,则b的取值范围为A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若x,y满足约束条件,则的最小值为
.参考答案:-5由x,y满足约束条件,作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在y轴上的截距最大,最小值为,故答案为-5.
12.已知集合A=,B=,则_______参考答案:略13.直线xsinα﹣y+1=0的倾角的取值范围. 参考答案:[0,]∪[)【考点】直线的倾斜角. 【分析】由直线方程求出直线斜率的范围,再由正切函数的单调性求得倾角的取值范围. 【解答】解:直线xsinα﹣y+1=0的斜率为k=sinα, 则﹣1≤k≤1, 设直线xsinα﹣y+1=0的倾斜角为θ(0≤θ<π), 则﹣1≤tanθ≤1, ∴θ∈[0,]∪[). 故答案为:[0,]∪[). 【点评】本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,训练了由直线斜率的范围求倾斜角的范围,是基础题. 14.若AB,AC,B={0,1,2,3},C={0,2,4,8},则满足上述条件的集合A为________.参考答案:,{0},{2},{0,2}15.当时,函数的最小值为____________________参考答案:5【分析】利用基本不等式即可求得答案.【详解】y=x+=x+-1+1≥2+1=5,当且仅当x=3时取等号,故函数y=x+的最小值为5.故答案为:5.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16.函数的单调减区间为__________;参考答案:略17.已知函数f(x)=,若f(a)=2,则实数a=
.参考答案:e2【考点】函数的值.【分析】当a<0时,f(a)=a﹣2=2;当a>0时,f(a)=lna=2.由此能求出实数a.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某种放射性元素的原子数N随时间t的变化规律是N=N0e﹣λt,其中e=2.71828…为自然对数的底数,N0,λ是正的常数(Ⅰ)当N0=e3,λ=,t=4时,求lnN的值(Ⅱ)把t表示原子数N的函数;并求当N=,λ=时,t的值(结果保留整数)参考答案:【考点】对数的运算性质.【专题】应用题;转化思想;数学模型法;函数的性质及应用.【分析】(Ⅰ)把N0=e3,λ=,t=4代人公式求出lnN的值;(Ⅱ)根据公式求出t的解析式,再计算N=,λ=时t的值.【解答】解:(Ⅰ)当N0=e3,λ=,t=4时,N=N0?e﹣λt=e3?e﹣2=e,∴lnN=lne=1;(Ⅱ)∵N=N0?e﹣λt,∴=e﹣λt,∴﹣λt=ln,∴t=﹣ln(或ln),其中0<N≤N0;当N=,λ=时,t=﹣10ln=10ln2=10×=10×≈7.【点评】本题考查了对数函数的运算与性质的应用问题,是基础题目.19.如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.(Ⅰ)若弧BC的中点为D.求证:AC∥平面POD;(Ⅱ)如果△PAB面积是9,求此圆锥的表面积.参考答案:【考点】直线与平面平行的判定;棱柱、棱锥、棱台的侧面积和表面积.【分析】(Ⅰ)证法1:设BC∩OD=E,由已知可证AC∥OE,线线平行即可证明线面平行AC∥平面POD;证法2:由AB是底面圆的直径,可证AC⊥BC,利用OD⊥BC,可证AC∥OD,即可判定AC∥平面POD.(Ⅱ)设圆锥底面半径为r,高为h,母线长为l,由圆锥的轴截面PAB为等腰直角三角形,可求,利用三角形面积公式可求r,进而可求此圆锥的表面积.【解答】解:(Ⅰ)证法1:设BC∩OD=E,∵D是弧BC的中点,∴E是BC的中点,又∵O是AB的中点,∴AC∥OE,又∵AC?平面POD,OE?平面POD,∴AC∥平面POD.证法2:∵AB是底面圆的直径,∴AC⊥BC,∵弧BC的中点为D,∴OD⊥BC,又AC,OD共面,∴AC∥OD,又AC?平面POD,OD?平面POD,∴AC∥平面POD.(Ⅱ)解:设圆锥底面半径为r,高为h,母线长为l,∵圆锥的轴截面PAB为等腰直角三角形,∴,∵由,得r=3,∴.20.如图,在四棱锥中,为正三角形,,平面平面.(1)点在棱上,试确定点的位置,使得平面;(2)求二面角的余弦值.参考答案:(1)证明见解析;(2).(1),故;设,若,则,即,即,即,即当为的中点时,,则平面,所以当为的中点时平面............6分故二面角的余弦值为...............12分考点:线面垂直的判定定理及空间向量的数量积公式等有关知识的综合运用.【易错点晴】立体几何是中学数学中的重要内容之一,也高考和各级各类考试的重要内容和考点.本题以四棱锥为背景考查的是空间的直线与平面的位置关系及二面角的平面角等有关知识的综合运用.解答本题第一问时,要掌握线面垂直判定定理中的条件,设法找出面内的两条相交直线与已知直线垂直;第二问中计算问题先建立空间直角坐标系,运用空间向量的有关知识先确定平面的一个法向量,再运用空间向量的数量积公式求解出二面角的余弦值为.21.已知角的顶点在,点,分别在角的终边上,且.(1)求的值;(2)求的值.参考答案:(1)∵,,∴.所以(2)因为点、分别在角的终边上,所以,.故.22.已知函数(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在上的单调性.参考答案:(1)f(x)的最小正周期为,最大值为;(2)在上单调递增;f(x)在上单调递减.试题分析:(1)由条件利用诱导公式、二倍角的正弦公式、二倍角的余弦公式以及辅助角公式化简函数的解析式,再利用正弦函数的周期公式可得函数的周期,根据三角函数的有界性求得的最大值;(2)根据可得,利用正弦函数的单调性,分类讨论求由,可求得在上的单调区间.试题解析:(1)f(x)=sin(-x)sinx-cos2x=cosxsinx-(1+cos2x)
=sin2x-cos2x-=sin(2x-)-,
因此f(x)的最小正周期为π,最大值为.
(2)当x∈,时,0≤2x-≤π,从而
当0≤2x-≤,即≤x≤时,f(x)单调递增;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 立春科学解读
- 专用油品运输业务协议(2024年度)版B版
- 2025年高效节水打机井建设与维护合同2篇
- 24节气:大寒 相关英语练习
- 16《金色的草地》说课稿-2024-2025学年三年级上册语文统编版
- 2025年度智慧交通PPP项目合作协议3篇
- 个人过桥融资合同2024年适用样本版
- 氢能燃料电池研发合作合同
- 2025版宠物领养中心公益项目合作协议3篇
- 2024年美发美容师个人服务合同
- 绿色供应链管理制度内容
- 无锡市区2024-2025学年四年级上学期数学期末试题一(有答案)
- 心理学基础知识考试参考题库500题(含答案)
- 血液净化中心院内感染控制课件
- 一年级数学(上)计算题专项练习集锦
- 消防安全应急预案下载
- 年产1.5万吨长链二元酸工程建设项目可研报告
- 《北航空气动力学》课件
- 纺织厂消防管道安装协议
- 【MOOC】思辨式英文写作-南开大学 中国大学慕课MOOC答案
- 期末测试卷(试题)-2024-2025学年五年级上册数学北师大版
评论
0/150
提交评论