版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市晋江内坑中学2022-2023学年高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,,则的值为(
)
A.13
B.
C.7
D.参考答案:B2.在△ABC中,已知6?=2?=3?,则∠A=()A.30° B.45° C.120° D.135°参考答案:D【考点】平面向量数量积的运算.【分析】设△ABC的三边分别为a、b、c,由题意利用两个向量的数量积的定义可得6bc?cosA=﹣2ac?cosB=﹣3ab?cosC,再把余弦定理代入求得a2=5b2,c2=2b2,从而求得cosA=的值,进而求得A的值.【解答】解:设△ABC的三边分别为a、b、c,由已知6?=2?=3?,可得6bc?cosA=2ac?cos(π﹣B)=3ab?cos(π﹣C),即6bc?cosA=﹣2ac?cosB=﹣3ab?cosC.再利用余弦定理可得6bc?=﹣2ac?=﹣3ab?,化简可得a2=5b2,c2=2b2,∴cosA==﹣,故A=135°,故选:D.3.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc2参考答案:C【分析】根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.4.已知0<a<1,b<-1,函数f(x)=ax+b的图象不经过:()A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:A5.在△ABC中,,M为AC边上的一点,且,若BM为∠ABC的角平分线,则的取值范围为(
)A. B.C. D.参考答案:A【分析】先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.6.如果指数函数y=(a﹣2)x在x∈R上是减函数,则a的取值范围是(
)A.a>2 B.0<a<1 C.2<a<3 D.a>3参考答案:C【考点】指数函数的单调性与特殊点.【专题】计算题.【分析】利用底数大于0小于1时指数函数为减函数,直接求a的取值范围.【解答】解:∵指数函数y=(a﹣2)x在x∈R上是减函数∴0<a﹣2<1?2<a<3故答案为:(2,3).故选C.【点评】本题考查指数函数的单调性.指数函数的单调性与底数的取值有关,当底数大于1时指数函数为增函数,当底数大于0小于1时指数函数为减函数.7.若两个非零向量,满足,则向量与的夹角为(
)A.
B.
C.
D.参考答案:B8.下列函数中,既是奇函数又是增函数的为
A.
B.
C.
D.参考答案:D9.若,则在:A、第一或第二象限
B、第一或第三象限
C、第一或第四象限D、第二或第四象限参考答案:B略10.若G是△ABC的重心,a、b、c分别是角A、B、C的对边,若,则角A=()A.90° B.60° C.45° D.30°参考答案:D试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.二、填空题:本大题共7小题,每小题4分,共28分11.已知,则
.
参考答案:略12.函数
()的最小正周期为
.参考答案:4略13.函数的最大值y=
,当取得这个最大值时自变量x的取值的集合是
.参考答案:略14.已知一个扇形的周长为,圆心角为,则此扇形的面积为_________________.参考答案:略15.的零点个数为__________. 参考答案:216.若tanα=2,tanβ=,则tan(α﹣β)等于.参考答案:
【考点】两角和与差的正切函数.【分析】由已知利用两角差的正切函数公式即可计算得解.【解答】解:∵tanα=2,tanβ=,∴tan(α﹣β)===.故答案为:.17.设函数,若时,恒成立,则实数m的取值范围是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设全集,,,求的值。参考答案:19.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.参考答案:【考点】与二面角有关的立体几何综合题;直线与平面平行的性质;直线与平面垂直的性质.【专题】空间角.【分析】(Ⅰ)由已知条件推导出BD⊥AA1,BD⊥AC,从而得到BD⊥平面A1AC,由此能证明BD⊥A1C.(Ⅱ)以D为原点建立空间直角坐标系D﹣xyz,利用向量法能求出二面角A﹣A1C﹣D1的余弦值.(Ⅲ)设P(x2,y2,z2)为线段CC1上一点,且=,0≤λ≤1.利用向量法能求出当=时,平面A1CD1⊥平面PBD.【解答】(本小题满分14分)(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正四棱柱,∴AA1⊥平面ABCD,且ABCD为正方形.…(1分)∵BD?平面ABCD,∴BD⊥AA1,BD⊥AC.…(2分)∵AA1∩AC=A,∴BD⊥平面A1AC.…(3分)∵A1C?平面A1AC,∴BD⊥A1C.…(4分)(Ⅱ)解:如图,以D为原点建立空间直角坐标系D﹣xyz.则D(0,0,0),A(2,0,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),…(5分)∵=(2,0,0),=(0,2,﹣4).设平面A1D1C的法向量=(x1,y1,z1).∴.即,…(6分)令z1=1,则y1=2.∴=(0,2,1).由(Ⅰ)知平面AA1C的法向量为=(2,2,0).…(7分)∴cos<>==.…(8分)∵二面角A﹣A1C﹣D1为钝二面角,∴二面角A﹣A1C﹣D1的余弦值为﹣.…(9分)(Ⅲ)解:设P(x2,y2,z2)为线段CC1上一点,且=,0≤λ≤1.∵=(x2,y2﹣2,z2),=(﹣x2,2﹣y2,4﹣z2).∴(x2,y2﹣2,z2)=λ(﹣x2,2﹣y2,4﹣z2).…(10分)即.∴P(0,2,).…(11分)设平面PBD的法向量.∵,,∴.即.…(12分)令y3=1,得=(﹣1,1,﹣).…(13分)若平面A1CD1⊥平面PBD,则=0.即2﹣=0,解得.所以当=时,平面A1CD1⊥平面PBD.…(14分)【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断,解题时要认真审题,注意向量法的合理运用.20.已知,求的值.参考答案:解:∵,∴。∴
21.A城市的出租车计价方式为:若行程不超过3千米,则按“起步价”10元计价;若行程超过3千米,则之后2千米以内的行程按“里程价”计价,单价为1.5元/千米;若行程超过5千米,则之后的行程按“返程价”计价,单价为2.5元/千米.设某人的出行行程为x千米,现有两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车.(Ⅰ)分别写出两种乘车方案计价的函数关系式;(Ⅱ)对不同的出行行程,①②两种方案中哪种方案的价格较低?请说明理由.参考答案:【考点】函数模型的选择与应用;分段函数的应用.【分析】(Ⅰ)根据两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车,分别写出两种乘车方案计价的函数关系式;(Ⅱ)分类讨论,作差,即可得出对不同的出行行程,①②两种方案中哪种方案的价格较低.【解答】解:(Ⅰ)方案①计价的函数为f(x),方案②计价的函数为g(x),则f(x)=;g(x)=;(Ⅱ)当0<x≤5时,f(x)=g(x),x>5时,f(x)<g(x)即方案①的价格比方案②的价格低,理由如下:x∈(5k,5k+3)(k∈N),f(x)﹣g(x)=2.5x﹣13k﹣9.5≤﹣0.5k﹣2<0;x∈(5k+3,5k+5)(k∈N),f(x)﹣g(x)=x﹣5.5k﹣5≤﹣0.5k<0.22.已知两个不共线的向量,满足,,.(1)若,求角的值;(2)若与垂直,求的值;(3)当时,存在两个不同的使得成立,求正数m的取值范围.参考答案:(1);(2);(3)【分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年场民法典技术合同合同法务顾问合同4篇
- 2025年度智能穿戴设备售后维修与保养合同范本4篇
- 上海办公室装修合作合同一
- 2025年度土地征收与补偿测绘服务合同范文4篇
- 二手车交易协议样式(2024版)版B版
- 2025年度咖啡厅租赁合同77069(含咖啡文化体验)4篇
- 2025年度智能产品全球分销渠道拓展合同协议书4篇
- 2025年度汽车零部件销售合同范本(二零二五版)4篇
- 2025年度智慧社区市场调研服务合同书4篇
- 专业驾驶员商业秘密保护协议(2024版)一
- DB3303T 059-2023 政务信息化项目软件开发费用测算规范
- 康复科宣传展板
- 二零二五年度IT公司内部技术文档保密与使用规范协议3篇
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024 年广东公务员考试行测试题【A类+B类+C类】真题及答案
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 湖北省学前教育技能高考《幼儿心理》历年考试真题题库(含答案)
- 山东师范大学《文学评论写作》2021-2022学年第一学期期末试卷
- 2024-2025学年人教版初一上学期期末英语试题与参考答案
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 公司出纳年度工作总结
评论
0/150
提交评论