版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市东海职业中学2022-2023学年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知点,直线,则点M到l距离的最小值为(
)A. B. C. D.参考答案:B【分析】先由点到直线距离公式得到,点到直线的距离为,再令,用导数的方法求其最值,即可得出结果.【详解】点到直线的距离为:,令,则,由得,所以当时,,单调递减;当时,,单调递增;所以,所以.故选B【点睛】本题主要考查导数的应用,先将问题转为为求函数最值的问题,对函数求导,用导数的方法求函数最值,即可求解,属于常考题型.2.直线与直线垂直,则等于(
)A.
B.
C.
D.参考答案:C3.参考答案:B略4.已知函数f(x)=x3+bx2+cx的图象如图所示,则x12+x22等于()A. B. C. D.参考答案:C【考点】6C:函数在某点取得极值的条件;6A:函数的单调性与导数的关系.【分析】先利用函数的零点,计算b、c的值,确定函数解析式,再利用函数的极值点为x1,x2,利用导数和一元二次方程根与系数的关系计算所求值即可【解答】解:由图可知,f(x)=0的三个根为0,1,2∴f(1)=1+b+c=0,f(2)=8+4b+2c=0解得b=﹣3,c=2又由图可知,x1,x2为函数f(x)的两个极值点∴f′(x)=3x2﹣6x+2=0的两个根为x1,x2,∴x1+x2=2,x1x2=∴=(x1+x2)2﹣2x1x2=4﹣=故选C【点评】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法5.在Δ中,角、、的对边分别是、、,已知,,,则的值为____________________.(A)
(B)
(C)
(D)参考答案:C6.(x4++2x)5的展开式中含x5项的系数为(
)A.160 B.210 C.120 D.252参考答案:D【分析】先化简,再由二项式通项,可得项的系数。【详解】,,当时,.故选D.【点睛】本题考查二项式展开式中指定项的系数,解题关键是先化简再根据通项公式求系数。7.设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A.
B.
C.(1,3)
D.(3,+∞)参考答案:A8.已知在中,角所对的三边长分别为,且满足,则角的大小为(
)A.60°
B.120°
C.30°
D.150°参考答案:B9.命题“若,则”的逆命题是(
).A.若,则 B.若,则C.若,则 D.若,则参考答案:C命题若“”则“”的逆命题是“”则“”,所以“若,则”的逆否命题是:“若,则”,故选.10.的展开式中的系数是(
)A.6
B.12
C.24
D.48参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是__________。参考答案:x+2y-8=0
12.曲线㏑x在点(1,k)处的切线平行于x轴,则k=
。
参考答案:略13.命题“对任意x>1,x2>1”的否定是
. 参考答案:存在x>1,x2≤1【考点】命题的否定. 【专题】简易逻辑. 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【解答】解:因为全称命题的否定是特称命题, 所以,命题“对任意x>1,x2>1”的否定是:“存在x>1,x2≤1”. 故答案为:存在x>1,x2≤1. 【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.14.从1,2,3,4这四个数中一次随机地取出两个数,则其中一个数是另一个数的两倍的概率为_________。
参考答案:15.命题“存在x∈Z,使x2+2x+m≤0”的否定是. 参考答案:?x∈Z,x2+2x+m>0【考点】命题的否定. 【专题】规律型. 【分析】将“存在”换为“?”同时将结论“x2+2x+m≤0”换为“x2+2x+m>0”. 【解答】解:“存在x∈Z,使x2+2x+m≤0”的否定是 ?x∈Z,x2+2x+m>0, 故答案为?x∈Z,x2+2x+m>0 【点评】求含量词的命题的否定,应该将量词交换同时将结论否定. 16.阅读如图所示的算法框图:若,,则输出的结果是
.(填中的一个)参考答案:略17.抛物线的准线方程是▲.参考答案:y=-1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}满足a1=1,|an+1﹣an|=pn,n∈N*.(Ⅰ)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.参考答案:解:(Ⅰ)∵数列{an}是递增数列,∴an+1﹣an>0,则|an+1﹣an|=pn化为:an+1﹣an=pn,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列an为常数数列,不符合数列{an}是递增数列,∴;(2)由题意可得,|an+1﹣an|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{an}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{an}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评: 本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大考点: 数列的求和;数列递推式.
专题: 等差数列与等比数列.分析: (Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{an}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|an+1﹣an|=pn”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{an}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{an}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答: 解:(Ⅰ)∵数列{an}是递增数列,∴an+1﹣an>0,则|an+1﹣an|=pn化为:an+1﹣an=pn,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列an为常数数列,不符合数列{an}是递增数列,∴;(2)由题意可得,|an+1﹣an|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{an}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{an}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评: 本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大19.已知,(1).若时,试判断的单调性;(2).若恒成立,求实数的取值范围.参考答案:(1)单调递减,单调递增;(2);20.已知函数,(1)求函数的单调区间.(2)若函数在上恒成立,求实数m的值.参考答案:(1)在上单调递增;在上单调递减(2)【分析】(1)对函数求导,讨论参数的取值范围,由导函数求单调区间(2)由题函数在上恒成立等价于在上,构造函数,讨论的单调性进而求得答案。【详解】(1)当时,,则函数在上单调递增;当时,由得,解得,由得,解得,所以在上单调递增;在上单调递减。(2)由题函数在上恒成立等价于在上由(1)知当时显然不成立,当时,,只需即可。令,则由解得,由解得所以上单调递增;在上单调递减,所以所以若函数在上恒成立,则【点睛】本题考查含参函数的单调性以及恒成立问题,比较综合,解题的关键是注意讨论参数的取值范围,构造新函数,属于一般题。21.已知=(λ+1,0,2λ),=(6,0,2),∥,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年度七年级地理第一学期期末质量检测卷(解析版)
- 2024版教育教学人员聘用合同样本版B版
- 2024淘宝店铺品牌形象设计及电商导购合同3篇
- 2024版家庭装饰装修细节施工合同版B版
- 2024版企业借款协议详细范例版B版
- 2024版产品外观设计授权协议3篇
- 2024版医院体检协议书范本
- 2024年鞋类制品销售合同
- 2022-2024年中考道德与法治试题分项汇编:理解权利义务(解析版)
- 2024年矿山运输设备租赁协议标准格式示例版B版
- 【川教版】《生命 生态 安全》四上第13课《预防冻疮》课件
- 工厂筹建方案
- UPVC管道安装施工方法
- 河南省郑州高新技术产业开发区2023-2024学年三年级上学期1月期末科学试题
- 女装行业退货率分析
- 计算机基础理论-进制的概念及换算试题及答案
- 森林草原防火工作培训课件
- 2023年妇科门诊总结及计划
- 方大重整海航方案
- 河北省秦皇岛市昌黎县2023-2024学年八年级上学期期末数学试题
- 矿山治理专项研究报告范文
评论
0/150
提交评论