




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市里满中学2021年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数是定义在R上的单调函数,对,恒成立,则
(
)A.1
B.3
C.8
D.9参考答案:D略2.函数的定义域为()A.[0,+∞) B.(﹣∞,2] C.[0,2] D.[0,2)参考答案:D【考点】33:函数的定义域及其求法.【分析】直接由根式内部的对数式大于等于0,分式的分母不等于0,列出不等式组,求解即可得答案.【解答】解:由,解得0≤x<2.∴函数的定义域为:[0,2).故选:D.3.复数等于(
)A.
B. C.
D.参考答案:D略4.如果全集,则A、
B、
C、
D、参考答案:答案:A解析:∵
∴
又∵
∴
故:选A;
5.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.﹣1 B.﹣1 C.﹣2 D.﹣2参考答案:B【考点】椭圆的简单性质.【分析】求出F(﹣c,0)关于直线x+y=0的对称点A的坐标,代入椭圆方程可得离心率.【解答】解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则,∴m=,n=c,代入椭圆方程可得,a2=b2+c2,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:B.【点评】本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.6.在平面四边形ABCD中,AD=AB=,CD=CB=,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A′BD,则在△A′BD折起至转到平面BCD内的过程中,直线A′C与平面BCD所成的最大角为()A.30° B.45° C.60° D.90°参考答案:A【考点】直线与平面所成的角.【分析】连结AC,BD,交于点O,由题设条件推导出OA=1,OC=2.将△ABD沿着对角线BD翻折成△A′BD,当A′C与以O为圆心,OA′为半径的圆相切时,直线A′C与平面BCD所成角最大,由此能求出结果.【解答】解:如图,平面四边形ABCD中,连结AC,BD,交于点O,∵AD=AB=,CD=CB=,且AD⊥AB,∴BD==2,AC⊥BD,∴BO=OD=1,∴OA==1,OC==2.将△ABD沿着对角线BD翻折成△A′BD,当A′C与以O为圆心,OA′为半径的圆相切时,直线A′C与平面BCD所成角最大,此时,Rt△OA′C中,OA′=OA=1,OC=2,∴∠OCA′=30°,∴A′C与平面BCD所成的最大角为30°.故选:A.7.设为平面,为直线,则的一个充分条件是A. B.C. D.参考答案:【知识点】直线与平面垂直的判定.G5D
解析:对于选项A:,根据面面垂直的判定定理可知,缺少条件m?α,故不正确;对于选项B:,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于选项C:,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于选项D:因为,所以,又因为所以.故选D【思路点拨】根据面面垂直的判定定理可知选项A是否正确,根据平面α与平面β的位置关系进行判定可知选项B和C是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项D正确.8.复数满足(为虚数单位),则=(
)A.
B.
C.
D.参考答案:B9.若复数满足,则=A. B. C. D.参考答案:C解析:因为,,故选C.10..函数f(x)=的大数图象为()A. B.C. D.参考答案:A【分析】由函数是奇函数,图象关于原点对称,排除C、D项;再由当时,函数值小于0,排除B,即可得到答案.【详解】由题知,函数满足,所以函数是奇函数,图象关于原点对称,排除C、D项;又由当时,函数的值小于0,排除B,故选A.【点睛】本题主要考查了函数图象的识别,其中解答中熟练应用函数的奇偶性和函数的取值范围,利用排除法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若变量满足则的最大值是参考答案:【解析】画出可行域(如图),在点取最大值答案:70
12.已知_________.参考答案:13.若数列的通项公式,记,试计算
,推测
.参考答案:14.已知loga<1,那么a的取值范围是.参考答案:0<a<或a>1【考点】7J:指、对数不等式的解法.【分析】对a讨论,分a>1,0<a<1,运用对数函数的单调性,得到a的不等式,解出它们,注意前提,最后求并.【解答】解:loga<1,即loga<logaa.当a>1时,<a,∴a>1.当0<a<1时,>a,∴0<a<.∴a的取值范围是0<a<或a>1.故答案为:0<a<或a>1.15.f(x)=,函数y=f[f(x)]+1的所有零点所构成的集合为
.参考答案:【考点】函数的零点.【专题】函数的性质及应用.【分析】函数y=f[f(x)]+1的零点,即求方程f[f(x)]+1=0的解,下面分:当x≤﹣1,﹣1<x≤0,0<x≤1,x>1时4中情况,分别代入各自的解析式求解即可.【解答】解:当x≤﹣1时,f(x)=x+1≤0,∴f[f(x)]+1=x+1+1+1=0,∴x=﹣3;当﹣1<x≤0时,f(x)=x+1>0,∴f[f(x)]+1=log2(x+1)+1=0,∴x=﹣;当0<x≤1时,f(x)=log2x≤0,∴f[f(x)]+1=log2x+1+1=0,∴x=;当x>1时,f(x)=log2x>0,∴f[f(x)]+1=log2(log2x)+1=0,∴x=所以函数y=f[f(x)]+1的所有零点所构成的集合为:{}故答案为:{}.【点评】本题考查函数的零点、方程的解法以及分类讨论的思想.属基础题.16.已知则的最大值是_____________.;参考答案:略17.已知函数,给出下列五个说法:①.②若,则.③在区间上单调递增.④将函数的图象向右平移个单位可得到的图象.⑤的图象关于点成中心对称.其中正确说法的序号是
.参考答案:【知识点】三角函数的图象与性质C3【答案解析】①④
f(x)=cosx?sinx=sin2x,为奇函数.
①f()=f()=sin=×=,正确;
②由f(x1)=-f(x2)=f(-x2),知x1=-x2+2kπ?或x1=π-x2+2kπ?,k∈Z;所以②错误.
③令-+2kπ≤2x≤+2kπ,得-+kπ≤x≤+kπ,由复合函数性质知f(x)在每一个闭区间[-+kπ,+kπ]上单调递增,但[-,]?[-+kπ,+kπ],故函数f(x)在[-,]上不是单调函数;所以③错误.
④将函数f(x)的图象向右平移个单位可得到y=sin2(x-)=sin?(2x-)=cos2x,所以④正确;
⑤函数的对称中心的横坐标满足2x0=kπ,解得x0=,即对称中心坐标为(,0),则点(-,0)不是其对称中心.所以⑤错误.故答案为①④.【思路点拨】利用三角公式和三角函数的图象和性质分别进行判断即可.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点集,其中为向量,点列在点集中,为的轨迹与轴的交点,已知数列为等差数列,且公差为1,.(1)求数列,的通项公式;(2)求的最小值;(3)设,求的值.参考答案:解析:(1)由,,得:
即
为的轨迹与轴的交点,
则
数列为等差数列,且公差为1,,
代入,得:
(2),,
,所以当时,有最小值,为.
(3)当时,,
得:
,
19.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升).(1)求y关于v的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,总用氧量最少.参考答案:【考点】5D:函数模型的选择与应用.【分析】(1)分别计算潜入水底用时、用氧量;水底作业时用氧量;返回水面用时、用氧量,即可得到总用氧量的函数;(2)利用基本不等式可得,时取等号,再结合c≤v≤15(c>0),即可求得确定下潜速度v,使总的用氧量最少.【解答】解:(1)由题意,下潜用时(单位时间),用氧量为(升),水底作业时的用氧量为10×0.9=9(升),返回水面用时(单位时间),用氧量为(升),∴总用氧量(v>0).(2),令y'=0得,在时,y'<0,函数单调递减,在时,y'>0,函数单调递增,∴当时,函数在上递减,在上递增,∴此时时用氧量最少.当时,[c,15]上递增,此时v=c时,总用氧量最少.20.已知函数(为实数).(I)若在处有极值,求的值;(II)若在上是增函数,求的取值范围.参考答案:(I)解:由已知得的定义域为
又
……3分
由题意得
……5分(II)解:依题意得
对恒成立,
……7分
……9分
的最大值为
的最小值为
……11分
又因时符合题意为所求
……13分
21.在中,设内角的对边分别为,向量,向量,若(1)求角的大小
;(2)若,且,求的面积.参考答案:略22.水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:
产量(单位:斤)
播种方式[840,860)[860,880)[880,900)[900,920)[920,940)直播48183931散播919223218
约定亩产超过900斤(含900斤)为“产量高”,否则为“产量低”(1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)(2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为“产量高”与“播种方式”有关?
产量高产量低合计直播
散播
合计
附:P(K2≥k0)0.100.0100.001k02.7066.63510.828参考答案:(1)1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙公司协议合同
- 发快递合同协议书范本
- 挖机转让协议合同书
- 合资合同终止协议
- 土地转卖合同补充协议
- 下载各种合同协议
- 租用羽毛球馆协议合同
- 运动员参赛合同协议范本
- 中国合同变更协议的特点
- 租用服务器协议合同书
- 《C程序设计项目教程(第2版)》全套教学课件
- 餐饮业卫生标准评估细则
- 上海市崇明区2023-2024学年三年级下学期期末数学试题
- 青盲(视神经萎缩)中医临床路径及入院标准2020版
- 老年专科护理考试试题
- T∕CACM 1075-2018 中医治未病技术操作规范 艾灸
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 施工工地环保知识培训课件
- 旅行社挂靠合同协议书模板
- 2024年浙江金华市金义东轨道交通有限公司招聘笔试参考题库含答案解析
- 体育心理健康与社会适应
评论
0/150
提交评论