版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.62.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为()A. B. C.36 D.3.已知函数f:R+→R+满足:对任意三个正数x,y,z,均有f().设a,b,c是互不相等的三个正数,则下列结论正确的是()A.若a,b,c是等差数列,则f(a),f(b),f(c)一定是等差数列B.若a,b,c是等差数列,则f(),f(),f()一定是等差数列C.若a,b,c是等比数列,则f(a),f(b),f(c)一定是等比数列D.若a,b,c是等比数列,则f(),f(),f()一定是等比数列4.设集合,集合为函数的定义域,则()A. B. C. D.5.在中,,,,则为()A. B. C. D.6.已知x、y的取值如下表:x0134y2.24.34.86.7从散点图可以看出y与x线性相关,且回归方程,则当时,估计y的值为()A.7.1 B.7.35 C.7.95 D.8.67.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.8.已知为第一象限角,,则()A. B. C. D.9.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.910.设,,,则,,的大小关系是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,梯形中,,于,,分别是,的中点,将四边形沿折起(不与平面重合),以下结论①面;②;③.则不论折至何位置都有_______.12.设等比数列的公比,前项和为,则.13.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.14.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)15.函数的定义域为___________.16.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.18.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.19.己知,,若.(Ⅰ)求的最大值和对称轴;(Ⅱ)讨论在上的单调性.20.已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.(1)求曲线C的轨迹方程(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.21.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.2、B【解析】
由剩余5个分数的平均数为21,据茎叶图列方程求出x=4,由此能求出5个剩余分数的方差.【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21,∴由茎叶图得:得x=4,∴5个分数的方差为:S2故选B【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.3、B【解析】
令,,,若是等差数列,计算得,进而可得结论.【详解】由题意,,令,,,若是等差数列,则所以,即,故,,成等差数列.若是等比数列,,,与,,既不能成等差数列又不等成等比数列.故选:B.【点睛】本题考查抽象函数的解析式,等差数列的等差中项的性质,属于中档题.4、B【解析】
解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.5、D【解析】
利用正弦定理得到答案.【详解】根据正弦定理:即:答案选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.6、B【解析】
计算,,代入回归方程计算得到,再计算得到答案.【详解】,,故,解得.当,.故选:【点睛】本题考查了回归方程的应用,意在考查学生的计算能力.7、D【解析】
甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【点睛】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.8、B【解析】
由式子两边平方可算得,又由,即可得到本题答案.【详解】因为,,,,所以.故选:B【点睛】本题主要考查利用同角三角函数的基本关系及诱导公式化简求值.9、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.10、D【解析】
首先确定题中,,的取值范围,再根据大小排序即可.【详解】由题知,,,,所以排序得到.故选:D.【点睛】本题主要考查了比较指数对数的大小问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②【解析】
根据题意作出折起后的几何图形,再根据线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识即可判断各选项的真假.【详解】作出折起后的几何图形,如图所示:.因为,分别是,的中点,所以是的中位线,所以.而面,所以面,①正确;无论怎样折起,始终有,所以面,即有,而,所以,②正确;折起后,面,面,且,故与是异面直线,③错误.故答案为:①②.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理,异面直线的判定定理等知识的应用,意在考查学生的直观想象能力和逻辑推理能力,属于基础题.12、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.13、6【解析】
由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。15、【解析】试题分析:由题设可得,解之得,故应填答案.考点:函数定义域的求法及运用.16、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.18、(1);(2).【解析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式.19、(1);,(2)在上单调递增,在上单调减.【解析】
(1)先由题意得到,再化简整理,结合三角函数的性质,即可求出结果;(2)根据三角函数的单调性,结合题中条件,即可求出结果.【详解】(1)所以最大值为,由,,所以对称轴,(2)当时,,从而当,即时,单调递增当,即时,单调递减综上可知在上单调递增,在上单调减.【点睛】本题主要考查三角函数,熟记三角函数的性质即可,属于常考题型.20、(1);(2)2【解析】
(1)设点,运用两点的距离公式,化简整理可得所求轨迹方程;(2)由题意可知,直线的斜率存在,设直线方程为,求得到直线的距离,以及弦长公式,和三角形的面积公式,运用换元法和二次函数的最值可得所求.【详解】(1)设点,,即,,即,曲线的方程为.(2)由题意可知,直线的斜率存在,设直线方程为,由(1)可知,点是圆的圆心,点到直线的距离为,由得,即,又,所以,令,所以,,则,所以,当,即,此时,符合题意,即时取等号,所以面积的最大值为.【点睛】本题主要考查了轨迹方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀少版八年级生物上册专项突破5微生物的结构特点及作用课件
- 电工电子教案整流电路
- 《回族维吾尔族民俗风情》教案
- 中考化学专项复习:根据化学方程式的简单计算
- 电商平台农产品质量承诺书
- 屋顶创业园区租赁协议
- 政府公务车辆租赁协议
- 交通运输电子招投标技术探讨
- 企事业单位标识牌施工合同
- 城市绿化管理员聘用样本
- 全员消防安全责任制
- 消防工程消防器材供应方案
- 《国家心力衰竭指南2023》解读
- 火电厂信息化建设规划方案
- 10kV供配电系统电气设备改造 投标方案(技术方案)
- 南昌中科体检报告查询
- “中信泰富”事件的反思
- 微观经济学课件
- 工业机器人系统运维知识竞赛题库及答案(100题)
- 北京市商业地产发展现状
- 质量管理五大工具之培训课件
评论
0/150
提交评论