2023届江西省南昌市莲塘镇第一中学高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2023届江西省南昌市莲塘镇第一中学高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2023届江西省南昌市莲塘镇第一中学高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2023届江西省南昌市莲塘镇第一中学高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2023届江西省南昌市莲塘镇第一中学高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且,则()A.2 B. C. D.2.关于x的不等式的解集是,则关于x的不等式的解集是()A. B.C. D.3.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法4.已知向量,,若,则的值为()A. B.1 C. D.5.设变量满足约束条件:,则的最小值()A. B. C. D.6.已知,,为坐标原点,则的外接圆方程是()A. B.C. D.7.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A. B. C. D.8.当前,我省正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.30 B.40 C.20 D.369.在中,已知,则的面积为()A. B. C. D.10.sin480°等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的公差为,且,其前项和为,若满足,,成等比数列,且,则______,______.12.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.13.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.14.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.15.函数,的递增区间为______.16.如图为函数(,,,)的部分图像,则函数解析式为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).18.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.19.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.20.如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.21.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.2、D【解析】

由不等式与方程的关系可得且,则等价于,再结合二次不等式的解法求解即可.【详解】解:由关于x的不等式的解集是,由不等式与方程的关系可得且,则等价于等价于,解得,即关于x的不等式的解集是,故选:D.【点睛】本题考查了不等式与方程的关系,重点考查了二次不等式的解法,属基础题.3、B【解析】

此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.

故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.4、B【解析】

直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.5、D【解析】

如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.6、A【解析】

根据圆的几何性质判断出是直径,由此求得圆心坐标和半径,进而求得三角形外接圆的方程.【详解】由于直角对的弦是直径,故是圆的直径,所以圆心坐标为,半径为,所以圆的标准方程为,化简得,故选A.【点睛】本小题主要考查三角形外接圆的方程的求法,考查圆的几何性质,属于基础题.7、B【解析】由题意不妨令棱长为,如图在底面内的射影为的中心,故由勾股定理得过作平面,则为与底面所成角,且如图作于中点与底面所成角的正弦值故答案选点睛:本题考查直线与平面所成的角,要先过点作垂线构造出线面角,然后计算出各边长度,在直角三角形中解三角形.8、A【解析】

先求出每个个体被抽到的概率,再由乙社区的低收入家庭数量乘以每个个体被抽到的概率,即可求解【详解】每个个体被抽到的概率为,乙社区由270户低收入家庭,故应从乙中抽取低收入家庭的户数为,故选:A【点睛】本题考查分层抽样的应用,属于基础题9、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.10、D【解析】试题分析:因为,所以选D.考点:诱导公式,特殊角的三角函数值.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

由,可求出,再由,,成等比数列,可建立关系式,求出,进而求出即可.【详解】由,可知,即,又,,成等比数列,所以,则,即,解得或,因为,所以,,所以.故答案为:2;.【点睛】本题考查等比数列的性质,考查等差数列前项和的求法,考查学生的计算求解能力,属于基础题.12、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.13、【解析】

根据弧长公式即可求解.【详解】由弧长公式可得故答案为:【点睛】本题主要考查了弧长公式的应用,属于基础题.14、【解析】

以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.15、[0,](开区间也行)【解析】

根据正弦函数的单调递增区间,以及题中条件,即可求出结果.【详解】由得:,又,所以函数,的递增区间为.故答案为【点睛】本题主要考查正弦型函数的单调区间,熟记正弦函数的单调区间即可,属于常考题型.16、【解析】

由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2);画图见解析【解析】

(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接,取中点记为,过作,且,则.证明:因为为中点,所以且;又因为,且,所以且,所以四边形为平行四边形,则;又因为,所以,且平面,所以平面;又因为,则,平面,即点为直线与平面的交点;因为,所以,则;且有上述证明可知:四边形为平行四边形,所以,所以,因为,.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1)a=0.06,平均值为12.25小时(2)【解析】

(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人中选拔2人,从而得到这2人来自不同组别的概率.【详解】(1)由频率分布直方图可得第三组和第五组的频率之和为,第三组的频率为∴该样本数据的平均数所以可估计该校学生一周课外阅读时间的平均值为小时.(2)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则从该6人中选拔2人的基本事件有:共15种,其中来自不同的组别的基本事件有:,共11种,∴这2人来自不同组别的概率为.【点睛】本题考查平均数、概率的求法,考查古典概型、频率分布直方图等基础知识,考查运算求解能力,是基础题.19、(1)证明见解析;(2)2.【解析】

(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【点睛】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.20、(1)(2)或.【解析】

(1)根据由圆心在直线y=6上,可设,再由圆N与y轴相切,与圆M外切得到圆N的半径为和得解.(2)由直线l平行于OA,求得直线l的斜率,设出直线l的方程,求得圆心M到直线l的距离,再根据垂径定理确定等量关系,求直线方程.【详解】(1)圆M的标准方程为,所以圆心M(7,6),半径为5,.由圆N圆心在直线y=6上,可设因为圆N与y轴相切,与圆M外切所以,圆N的半径为从而解得.所以圆N的标准方程为.(2)因为直线l平行于OA,所以直线l的斜率为.设直线l的方程为,即则圆心M到直线l的距离因为而所以解得或.故直线l的方程为或.【点睛】本题主要考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论