江苏省南通市通州区、海安县2023年数学高一下期末联考模拟试题含解析_第1页
江苏省南通市通州区、海安县2023年数学高一下期末联考模拟试题含解析_第2页
江苏省南通市通州区、海安县2023年数学高一下期末联考模拟试题含解析_第3页
江苏省南通市通州区、海安县2023年数学高一下期末联考模拟试题含解析_第4页
江苏省南通市通州区、海安县2023年数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件2.与圆关于直线对称的圆的方程为()A. B.C. D.3.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.4.不等式x+5(x-1)A.[-3,1C.[125.设是等差数列的前项和,若,则A. B. C. D.6.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π7.设集合,集合为函数的定义域,则()A. B. C. D.8.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.9.如图,已知四面体为正四面体,分别是中点.若用一个与直线垂直,且与四面体的每一个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为().A. B. C. D.10.当时,不等式恒成立,则实数m的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,的前项和为,则___________.12.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.13.已知,,,则的最小值为__________.14.设当时,函数取得最大值,则______.15.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为16.已知扇形的圆心角为,半径为,则扇形的面积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.18.(1)已知圆经过和两点,若圆心在直线上,求圆的方程;(2)求过点、和的圆的方程.19.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.20.设数列的前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件2、A【解析】

设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】

分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.4、D【解析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法5、A【解析】,,选A.6、C【解析】

先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.7、B【解析】

解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.8、A【解析】

根据题意可知的值,从而可求的值.【详解】因为,,则.故选A.【点睛】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.9、A【解析】

通过补体,在正方体内利用截面为平行四边形,有,进而利用基本不等式可得解.【详解】补成正方体,如图.∴截面为平行四边形,可得,又且可得当且仅当时取等号,选A.【点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.10、A【解析】

当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x)min,利用基本不等式可求得(x)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x恒成立⇔m<(x)min,当x>0时,x26(当且仅当x=3时取“=”),因此(x)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.12、1【解析】

由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.13、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】

试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.16、【解析】试题分析:由题可知,;考点:扇形面积公式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);【解析】

(1)根据已知求得的斜率,由点斜式求出直线的方程.(2)根据已知求得的斜率,由点斜式写出直线的方程,联立的方程,求得两条直线交点的坐标,再由三角形面积公式求得三角形面积.【详解】解:(1)∵∥,∴直线的斜率是又直线过点,∴直线的方程为,即(2)∵,∴直线的斜率是又直线过点,∴直线的方程为即由得与的交点为∴直线,,轴围成的三角形的面积是【点睛】本小题主要考查两条直线平行、垂直时,斜率的对应关系,考查直线的点斜式方程,考查两条直线交点坐标的求法,考查三角形的面积公式,属于基础题.18、(1);(2)【解析】

(1)由直线AB的斜率,中点坐标,写出线段AB中垂线的直线方程,与直线x-2y-3=0联立即可求出交点的坐标即为圆心的坐标,再根据两点间的距离公式求出圆心到点A的距离即为圆的半径,根据圆心坐标与半径写出圆的标准方程即可;(2)设圆的方程为,代入题中三点坐标,列方程组求解即可【详解】(1)由点和点可得,线段的中垂线方程为.∵圆经过和两点,圆心在直线上,∴,解得,即所求圆的圆心,∴半径,所求圆的方程为;(2)设圆的方程为,∵圆过点、和,∴列方程组得解得,∴圆的方程为.【点睛】本题考查了圆的方程求解,考查了待定系数法及运算能力,属于中档题.19、(1)(1)证明见解析【解析】

数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【点睛】本题主要考查了等差数列与等比数列的定义通项公式、指数运算性质、数列递推关系,考查了推理能力与计算能力,属于中档题.20、(1);(2)【解析】

(1)由,且,可得当也适合,;(2)∵21、(1);(2);(3).【解析】

(1)对称轴为,对称轴为,再根据图像平移关系求解;(2)分离参数,转化为求函数的最值;(3)令为整体,转化为二次函数根的分布问题求解.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论