




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点,若函数的图象恰好经过个格点,则称函数为阶格点函数.下列函数中为一阶格点函数的是()A. B. C. D.2.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.13.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.4.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切5.设集合,,,则()A. B. C. D.6.函数的零点所在的区间为()A. B. C. D.7.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④8.若,则()A.-1 B. C.-1或 D.或9.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.10.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且,则的值为________.12.如图,在中,,,点D为BC的中点,设,.的值为___________.13.在正项等比数列中,,,则公比________.14.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.15.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;16.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调递减区间;(2)在锐角中,若角,求的值域.18.如图.在四棱锥中,,,平面ABCD,且.,,M、N分别为棱PC,PB的中点.(1)证明:A,D,M,N四点共面,且平面ADMN;(2)求直线BD与平面ADMN所成角的正弦值.19.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.20.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.21.高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.(1)求小明物理成绩的最后得分;(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意得,我们逐个分析四个选项中函数的格点个数,即可得到答案.【详解】根据题意得:函数y=sinx图象上只有(0,0)点横、纵坐标均为整数,故A为一阶格点函数;函数没有横、纵坐标均为整数,故B为零阶格点函数;函数y=lgx的图象有(1,0),(10,1),(100,2),…无数个点横、纵坐标均为整数,故C为无穷阶格点函数;函数y=x2的图象有…(﹣1,0),(0,0),(1,1),…无数个点横、纵坐标均为整数,故D为无穷阶格点函数.故选A.【点睛】本题考查的知识点是函数的图象与图象变化,其中分析出函数的格点个数是解答本题的关键,属于中档题.2、D【解析】
根据题意,由正弦定理得,再把,,代入求解.【详解】由正弦定理,得,所以.故选:D【点睛】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.3、A【解析】
分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.4、C【解析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定5、A【解析】因为,所以,又因为,,故选A.6、C【解析】
分别将选项中的区间端点值代回,利用零点存在性定理判断即可【详解】由题函数单调递增,,,则,故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题7、D【解析】
根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。8、C【解析】
将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.9、B【解析】
函数,由,可得,,因此即可得出.【详解】函数由,可得解得,∵在区间内没有零点,
.故选B.【点睛】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.10、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用共线向量的坐标表示求出的值,可计算出向量的坐标,然后利用向量的模长公式可求出的值.【详解】,,且,,解得,,则,因此,,故答案为:.【点睛】本题考查利用共线向量的坐标表示求参数,同时也考查了向量模的坐标运算,考查计算能力,属于基础题.12、【解析】
在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.13、【解析】
利用等比中项可求出,再由可求出公比.【详解】因为,,所以,,解得.【点睛】本题考查了等比数列的性质,考查了计算能力,属于基础题.14、.【解析】
设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.15、【解析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.16、【解析】
该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【点睛】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)利用二倍角、辅助角公式化简,然后利用单调区间公式求解单调区间;(2)根据条件求解出的范围,然后再求解的值域.【详解】(1),令,解得:,所以单调减区间为:,;(2)由锐角三角形可知:,所以,则,又,所以,,则.【点睛】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.18、(1)证明见解析;(2)【解析】
(1)先证,再证,即可得证;要证平面ADMN,可通过求证PB垂直于ADMN中的两条交线来证明(2)求直线BD与平面ADMN所成角,需要找出BD在平面ADMN的射影,可通过三垂线定理去进行证明【详解】解:(1)证明因为M,N分别为PC,PB的中点,所以;又因为,所以.从而A,D,M,N四点共面;因为平面ABCD,平面ABCD.所以,又因为,,所以平面PAB,从而,因为,且N为PB的中点,所以;又因为,所以平面ADMN;(2)如图,连结DN;由(1)知平面ADMN,所以,DN为直线BD在平面ADMN内的射影,且,所以,即为直线BD与平面ADMN所成的角:在直角梯形ABCD内,过C作于H,则四边形ABCH为矩形;,在中,;所以,,,在中,,,,所以.综上,直线BD与平面ADMN所成角的正弦值为.【点睛】本题考查了线面垂直的判定定理,考查了线面角的求解方法,考查了运算能力及空间想象能力,属于中档题.19、(1)或;(2).【解析】
(1)先由,将不等式化为,直接求解,即可得出结果;(2)先由题意得到恒成立,根据含绝对值不等式的性质定理,得到,从而可求出结果.【详解】(1)当时,求不等式,即为,所以,即或,原不等式的解集为或.(2)不等式,即为,即关于的不等式恒成立.而,所以,解得或,解得或.所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记不等式的解法,以及绝对值不等式的性质定理即可,属于常考题型.20、(1)见解析(2)6【解析】
(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【点睛】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.21、(1)70分(2)(3)【解析】
(1)先求出此次考试物理成绩落在内的频率,再由小明的物理成绩即可得出结果;(2)根据选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、60分、50分、40分,结合茎叶图中数据,即可得出结果;(3)先记物理、化学、生物、历史、地理、政治依次为,用列举法列举出小明的所有可能选法,再列举出小明此次考试选考科目包括化学的选法,基本事件的个数之比就是所求概率.【详解】解:(1),此次考试物理成绩落在内的频率依次为,概率之和为小明的物理成绩为分,大于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业公司股权转让合同
- 个人转租租房合同协议
- 住建委房屋租赁合同样本
- 短期临时运输合作协议2025
- Brand KPIs for pet supply online shop PetSmart in the United States-外文版培训课件(2025.2)
- 2025年度行政诉讼法知识竞赛题库及答案(共150题)
- 2025年度个人消费贷款担保合同样本
- 2025年度采购服务的合同
- 家居装修装饰工程合同管理
- 中药材购销合同范本2025年
- 铁路客车车辆电气系统维护考核试卷
- DB34∕T 4235-2022 浓香窖泥检测操作规程
- 统编版高中语文必修下:辨识媒介信息
- 2024年东南亚纸巾商销(AFH)市场深度研究及预测报告
- 服务质量保障措施及进度保障措施
- 七层垂直循环式立体车库
- 中国子宫内膜增生管理指南(2022)解读
- 酸枣仁汤的剂型研究
- 2022版义务教育(道德与法治)课程标准(附课标解读)
- 2021年国家公务员考试行测真题答案及解析
- 人口社会学(第二版) 课件 第八章 婚姻家庭
评论
0/150
提交评论