




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④2.sincos+cos20°sin40°的值等于A. B. C. D.3.已知非零向量,满足,且,则与的夹角为
A. B. C. D.4.下列函数的最小值为的是()A. B.C. D.5.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高6.在中,若,,,则等于()A.3 B.4 C.5 D.67.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形8.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.9.在正方体中,直线与直线所成角是()A. B. C. D.10.以下给出了4个命题:(1)两个长度相等的向量一定相等;(2)相等的向量起点必相同;(3)若,且,则;(4)若向量的模小于的模,则.其中正确命题的个数共有()A.3个 B.2个 C.1个 D.0个二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,则与的夹角等于_______.12.对于下列数排成的数阵:它的第10行所有数的和为________13.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.14.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.15.当实数a变化时,点到直线的距离的最大值为_______.16.已知,向量的夹角为,则的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等比数列的前n项和为.已知,,求和.18.如果有穷数列(m为正整数)满足,即,那么我们称其为对称数列.(1)设数列是项数为7的对称数列,其中,为等差数列,且,依次写出数列的各项;(2)设数列是项数为(正整数)的对称数列,其中是首项为50,公差为-4的等差数列.记数列的各项和为数列,当k为何值时,取得最大值?并求出此最大值;(3)对于确定的正整数,写出所有项数不超过2m的对称数列,使得依次为该数列中连续的项.当时,求其中一个数列的前2015项和.19.设函数.(1)已知图象的相邻两条对称轴的距离为,求正数的值;(2)已知函数在区间上是增函数,求正数的最大值.20.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.21.已知.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.2、B【解析】由题可得,.故选B.3、B【解析】
根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.4、C【解析】分析:利用基本不等式的性质即可判断出正误,注意“一正二定三相等”的使用法则.详解:A.时显然不满足条件;B.其最小值大于1.D.令因此不正确.故选C.点睛:本题考查基本不等式,考查通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.5、C【解析】
根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.6、D【解析】
直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.7、D【解析】
先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.8、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题9、B【解析】
直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.10、D【解析】
利用向量的概念性质和向量的数量积对每一个命题逐一分析判断得解.【详解】(1)两个长度相等的向量不一定相等,因为它们可能方向不同,所以该命题是错误的;(2)相等的向量起点不一定相同,只要它们方向相同长度相等就是相等向量,所以该命题是错误的;(3)若,且,则是错误的,举一个反例,如,不一定相等,所以该命题是错误的;(4)若向量的模小于的模,则,是错误的,因为向量不能比较大小,因为向量既有大小又有方向,故该命题不正确.故选:D【点睛】本题主要考查向量的概念和数量积的计算,意在考查学生对这些知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知向量的坐标求得两向量的模及数量积,代入数量积求夹角公式得答案.【详解】∵(﹣1,),(,﹣1),∴,,则cos,∴与的夹角等于.故答案为:.【点睛】本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是基础题.12、【解析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.13、【解析】分析:分类讨论截距为0和截距不为零两种情况求解直线方程即可.详解:当截距为0时,直线的方程为,满足题意;当截距不为0时,设直线的方程为,把点代入直线方程可得,此时直线方程为.故答案为.点睛:求解直线方程时应该注意以下问题:一是根据斜率求倾斜角,要注意倾斜角的范围;二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论;三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.14、【解析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.15、【解析】
由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.16、【解析】
将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或.【解析】
试题解析:(1)解得或即或(2)当时,当时,考点:本题考查求通项及求和点评:解决本题的关键是利用基本量法解题18、(1)2,5,8,11,8,5,2;(2);(3)答案见详解【解析】
(1)求出前四项的公差,然后写出即可(2)先算出,然后(3)依题意,可写出所有项数不超过2m的对称数列,然后求出第一个数列的【详解】(1)设数列的公差为,则,解得所以各项为2,5,8,11,8,5,2(2)因为是首项为50,公差为-4的等差数列所以所以所以当时取得最大值,为626(3)所有可能的对称数列是①,②,③,④,对于①,当时,当时所以【点睛】本题是一道数列的新定义的题,考查了数列的求和和最值问题.19、(1)1;(2).【解析】
(1)由二倍角公式可化函数为,结合正弦函数的性质可得;(2)先求得的增区间,其中,此区间应包含,这样可得之间的不等关系,利用>0,得的范围,从而得,最终可得的最大值.【详解】解法1:(1)因为图象的相邻两条对称轴的距离为,所以的最小正周期为,所以正数.(2)因为,所以由得单调递增区间为,其中.由题设,于是,得因为,所以,,因为,所以,所以,正数的最大值为.解法2:(1)同解法1.(2)当时,因为在单调递增,因为,所以于是,解得,故正数的最大值为.【点睛】本题考查二倍角公式,考查三角函数的性质.解题关键是化函数为一个角的一个三角函数形式,即形式,然后结合正弦函数的性质求解.20、(1);(1),1.【解析】
(1)由题得,再求出x的值;(1)先化简得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人的教育》读后感
- 学前教育专业特色
- 班主任的角色定位与转变计划
- 打造国际化品牌的成功之路计划
- 财务报告透明化措施计划
- 深入了解竞争对手的工作总结计划
- 掌握货币政策影响个人投资决策计划
- 职业风格的多样性与选择计划
- 特殊群体医疗服务的需求分析计划
- 海洋资源的地理分布与挑战试题及答案
- 中级社会工作者法规与政策真题及答案解析
- 钢管材质证明书
- 劳务费签领表
- 国家重点保护野生植物采集申请表
- 高中语文:陈情表
- 数字信息技术与中学思政课教育教学深度融合
- 江苏省交通技师学院教师招聘考试真题2022
- 数据挖掘(第2版)PPT全套完整教学课件
- 2023年北京海淀高三一模化学试题及参考答案
- 教师资格定期注册申请表(样表)
- 中国近现代史纲要(上海建桥学院)智慧树知到答案章节测试2023年
评论
0/150
提交评论