版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△中,为边上的中线,为的中点,则A. B.C. D.2.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或3.已知正数、满足,则的最小值为()A. B. C. D.4.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.5.()A.4 B. C.1 D.26.已知向量,且,则().A. B.C. D.7.已知数列的前项和为,且,,则()A.127 B.129 C.255 D.2578.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.129.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac210.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数可由y=sin2x向左平移___________个单位得到.12.的值为________.13.计算:=_______________.14.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.15.两圆,相切,则实数=______.16.已知数列满足,若,则数列的通项______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足:.(1)求证:数列为等差数列,并求;(2)记,求数列的前项和.18.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.19.已知函数.(1)用五点法作图,填表井作出的图像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求实数m的取值范围.20.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄,(单位:千元)的数据资料,算出,附:线性回归方程,其中为样本平均值.(1)求家庭的月储蓄对月收入的线性回归方程;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;(2)若直线l过点(0,2),求l的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.2、C【解析】
由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.3、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.4、C【解析】
先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【点睛】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.5、A【解析】
分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.6、D【解析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.7、C【解析】
利用迭代关系,得到另一等式,相减求出,判断数列是否为等比数列,利用等比数列求和公式可得.【详解】因为,,所以,相减得,,,又,所以,,所以数列是等比数列,所以,故选C.【点睛】本题考查等比数列的求和,数列通项公式的求法,考查计算求解能力,属于中档题.8、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。9、C【解析】
通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.10、A【解析】
根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将转化为,再利用平移公式得到答案.【详解】向左平移故答案为【点睛】本题考查三角函数图像的平移,将正弦函数化为余弦函数是解题的关键,也可以将余弦函数化为正弦函数求解.12、【解析】
利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值.【详解】依题意,由于,所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.13、【解析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.14、或【解析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.15、0,±2【解析】
根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.16、【解析】
直接利用数列的递推关系式和叠加法求出结果.【详解】因为,所以当时,.时也成立.所以数列的通项.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】
(1)由等差数列的定义证明,利用等差数列通项公式可求得;(2)用裂项相消法求数列的和.【详解】(1)证明:∵,∴,即,∴是等差数列,公差为,,∴,∴;(2)由(1),所以.【点睛】本题考查用定义证明等差数列,考查等差数列的通项公式,考查用裂项相消法求数列的前项和.掌握等差数的定义是解题关键.数列求和时除掌握等比数列的求和公式外还要掌握数列的几种求和方法:裂项相消法,错位相减法,分组(并项)求和法,倒序相加法等等.18、解:(Ⅰ)∵是平行四边形直线CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直线方程为,.【解析】略19、(1)见解析;(2)时,,时,;(3).【解析】
(1)当时,求出相应的x,然后填入表中;标出5个点,然后用一条光滑的曲线把它们连接起来;(2)先根据x的范围求出的范围,再由正弦函数的性质可求出函数的最大值和最小值;(3)不等式在上恒成立,转化为在上恒成立,进一步转化为m-2,m+2与函数在上的最值关系,列不等式后求得实数m的取值范围.【详解】(1)x0y131-10(2),,即,所以的最大值为3,最小值为2.(3),,由(2)知,,,且,即m的取值范围为.【点睛】本题考查正弦函数的最值和恒成立问题,把不等式恒成立问题转化为含m的代数式与的最值关系的问题是解决本题的关键,属于中档题.20、(1);(2)1.7【解析】
(1)根据数据,利用最小二乘法,即可求得y对月收入x的线性回归方程回归方程x;(2)将x=7代入即可预测该家庭的月储蓄.【详解】(1)由题意知,,∴由.故所求回归方程为(2)将代入回归方程可以预测该家庭的月储蓄为(千元).【点睛】本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查转化思想,属于中档题.21、(1);(2).【解析】
(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判断直线的斜率是存在的,设出其方程,与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年安徽考客运资格证要考几科
- 2024年厂房内墙乳胶漆承包合同
- 2024声学工程设计与施工合同
- 2024年大宗商品交易中介服务合同
- 2024年北京客运资格专业能力考试
- 2024年黔东南小型客运从业资格证2024年考试题
- 冲刺模拟试卷04-2023年高考数学考前高分冲刺模拟卷(新高考专用)
- 2024年重庆客运驾驶员考试试卷题库
- 2024年邢台道路客运输从业资格证培训资料
- 用影视讲述传统文化的跨文化故事
- FZ/T 21001-2019自梳外毛毛条
- CB/T 3780-1997管子吊架
- 施工图预算的编制工作规范
- 日立电梯MCA调试培训课件
- 电动客车驱动桥总成设计
- 四川省阿坝藏族羌族自治州《综合知识》事业单位国考真题
- 2023年人民法院电子音像出版社招聘笔试题库及答案解析
- 大学生心理健康优秀说课-比赛课件
- 收款账户变更的声明
- 九年级道德与法治中考复习资料
- 《化学发展简史》学习心得
评论
0/150
提交评论