![文献综述-桥梁热效应分析解析_第1页](http://file4.renrendoc.com/view/128b49783ff2ebb47444d04f65844191/128b49783ff2ebb47444d04f658441911.gif)
![文献综述-桥梁热效应分析解析_第2页](http://file4.renrendoc.com/view/128b49783ff2ebb47444d04f65844191/128b49783ff2ebb47444d04f658441912.gif)
![文献综述-桥梁热效应分析解析_第3页](http://file4.renrendoc.com/view/128b49783ff2ebb47444d04f65844191/128b49783ff2ebb47444d04f658441913.gif)
![文献综述-桥梁热效应分析解析_第4页](http://file4.renrendoc.com/view/128b49783ff2ebb47444d04f65844191/128b49783ff2ebb47444d04f658441914.gif)
![文献综述-桥梁热效应分析解析_第5页](http://file4.renrendoc.com/view/128b49783ff2ebb47444d04f65844191/128b49783ff2ebb47444d04f658441915.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LiteratureReviewaboutSolarRadiation-induced
ThermalEffectonConcreteBridge
Abstract:Changingenvironmentalconditions,especiallytemperature,havebeenobservedtobeacomplicatedfactoraffectingvibrationproperties,suchasfrequencies,modeshapes,anddampingofcivilstructures.Thispaperreviewstechnicalliteratureconcerningsolarradiation-inducedtemperatureeffectonconcretebridge.Mostofthesestudiesfocusonvariationsinfrequenciesofbridgestructures,withsomestudiesonvariationsinmodeshapesanddampingandothertypesofstructures.Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldandthermalstressesatdifferenttime.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.Keyword:temperature;literature;bridgestructures;methodology
1Introduction
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thethermaleffectsonconcretebridgesevenlongspanbridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.Withtherapiddevelopmentofcomputationalmethodsandcomputertechnology,anumberofone-dimensionaltothree-dimensionalfiniteelementmodelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspensionbridgesarequitedifferentfromthoseofcommonconcretebridges.Itisdifficultandinsufficienttoinvestigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Zukinvestigatedthethermalbehaviorofseveralconcretebridgesandfoundthatthetemperaturedistributionwasaffectedbyairtemperature,wind,humidity,intensityofsolarradiationandmaterialtype.Adamsetal.investigatedtherelationbetweentemperatureandtheaxialresonantfrequencyofabar.Cornwelletal.investigatedthethermalvariationofdynamicpropertiesoftheAlamosaCanyonBridge.Cappslatermeasuredtemperatureandtemperature-inducedlongitudinalmovementsonasteelboxbridgeintheUK.EarlystudiesinthefieldincludethoseofPriesleyandChurchwardandSokai.AskegaardandMossingstudiedathree-spanRCfootbridgeandobserveda10%seasonalhangeinfrequencyovera3-yearperiod.Cornwelletal.investigatedthethermalvariationsinthedynamicpropertiesoftheAlamosaCanyonBridgeandfoundabout5%dailychangesinthefirstthreenaturalfrequencies.PeetersandDeRoeck
1
monitoredtheZ24Bridgecontinuouslyfornearlyayearandtheyreportedabilinearrelationbetweenthefirsttwofrequenciesandthestructuraltemperature.Theyfoundthatthetwofrequenciesincreasedbyabout10%whentemperaturedecreasedfrom0to-7℃.Fortemperaturesabove0℃,thefirstfrequencydecreasedslightlywhenthewearingsurfacetemperaturewentup,whereasthesecondfrequencyincreasedslightlywhenthedecksoffittemperaturewentup.FuandDeWolfstudiedatwo-span,slightlyskewedcompositebridgeandfoundthattheexpansionbearingswereapproximatelypartiallyconstrainedbelow
F.Thefirstthreefrequenciesdecreasedby12.3,16.8,and9.0%respectively,asthetemperatureincreasedfromF(°-17.8℃)toapproximately60F(15.°6℃),whereastheychangedlittleasthetemperaturewasabove60F°.Theauthorsthensimulatedathermalaxialloadandappliedittothegirdereccentricallyforcalculatingthefrequenciesunderdifferenttemperatures.Thechangeinfrequenciesagreedwellwiththemeasurement.Nietal.extracted1-yearmodalpropertiesoftheTingKaucable-stayedbridgeinHongKong.Therelativevariationsinthemeasuredmodalfrequencies(i.e.,theratiooffrequencychangetoaveragefrequencyforeachmode)underweakwindconditionsrangedbetween1.7(the8thmode)and6.7%
(the1stmode)whenbridgetemperaturesrangedbetween3and53 ℃.Theyconcludedthattheeffective
temperature(i.e.,temperatureaveragedoverthecrosssectionweightedbyareas)wasinsufficientinformulatingagoodcorrelationbetweenthemodalfrequenciesandtemperaturesbecauseoftheexistenceoftemperaturegradientoverthecrosssection.MacdonaldandDaniellinvestigatedvariationsinnatural
frequenciesoftheSecondSevernCrossingcablestayedbridgebecauseofwind,temperature,andtrafficloading.Theyreportedthattherewasnoapparenttrendbetweenthenaturalfrequenciesandthemean
bridgedecktemperaturebecausethetemperaturechangewassmall.Desjardinesetal.studiedthevariationsinfrequenciesoftheConfederationBridge(madeofpre-stressedconcrete)overa6-monthperiod.Theyreportedacleartrendofreductioninthemodalfrequenciesbyabout4%,whentheaveragetemperatureof
theconcreteofthebridgevariedfrom-20to+25℃.LiuandDeWolfreportedthat,duringa1-yearmeasurement,thefirstthreefrequenciesofacurvedconcreteboxbridgedecreasedwhenconcrete
temperatureincreased.Alinearregressionanalysisshowedthatfrequenciesdecreasedby0.007,0.008,and0.007HzastemperatureincreasedbyoneFahrenheitdegree,whichisequivalentto0.8,0.7,and0.3%perdegreeCelsius.TheYunyangSuspensionBridgewitha1,490-mmainspanexperiencedabout2%variationinthefirstsixmodalfrequenciesduringaperiodof10months,astheambienttemperatureofthesteel
bridgevariedfrom-5to+50℃.During16daysofcontinuousmonitoringofacable-stayedbridge,Lietal.foundthatthefirstsixfrequenciesvariedbyabout1.5–3.2%asambienttemperaturechangedfrom-11.5to+3.7℃.
Alternatively,fieldmeasurmentisaneffectiveyetpracticalapproachtoobtaintheinformationofbridgetemperatureenvironment,whichprovidesthepossibilitytocarryouttemperatureeffectevaluationfromthepracticalviewpoint.Mostofthecurrentinvestigationsmainlyfocusonthethermalassessmentofbridgedeck.Thefieldmeasurementcanonlyobtainthetemperaturevaluesoflimitedtestingpointsinsteadofthedetailedthermalgradientsoftheconcretestructures.Thetime-varyingeffectsoftemperatureofconcretebridgepiershavenotbeensystematicallyinvestigated.
2
2ThermalEffectonConcreteBridge
2.1Temperaturevariationandthermalstressesonconcretebridgepiers
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thetemperatureeffectsonconcretebridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.
Arealhighwaybridge(Fig1) constructedbyconcreteinnorthernChinaistakenastheexampleto
examinethefeasibilityoftheproposedanalyticalapproach.Thebirdeyeviewofthebridge’sisdisplayedinFigure1.Thebridgehasnightspansandthelengthforasinglespanis30m.Thetotalbridgelengthis278.2m.Thebridgepiershavetherectangulartubesizes.Thegeometricsizeofthepiercrosssectionis
2.5minwidthand6.5minlength.Thethicknessofthecrosssectionis0.5m.Thetime-varyingtemperaturefieldsofthepiersurfacearemeasuredbyusingthethermalinfraredimager.
Fig1.Birds’eyeviewofthebridge
Inthispart,dynamictemperaturefieldsandthermalstressesofaconcretepierareactivelystudiedwiththeaidingofthecommercialpackageANSYS.Thedifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionandcomputethethermaldeformationwithintheconcretepier.Thesurfacetemperatureofthepierismeasuredbyusingthethermalinfraredimager.Theambienttemperatureandwindvelocityarealsocollectedatthesametime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcretepieragreeswellwithmeasurementresults.Thethermalgradientof
theconcreteinthethicknessdirectionisalittlelarge.Thehorizontaldeformationismuchlargerthanthatinverticaldeformationduetotheinfluenceoftheconstraintsonthetopandbottomsidesofthepier.Thethermalstressesoftheexamplebridgepierarenotverylargeexceptforthelocalareasontopofthepiers.
3
Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldatdifferenttimeinstantthestructuraltime-varyingtemperatureeffects.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.
Fig2.Temperaturefieldsofthebridgepier
Fig3.Finiteelementmodel
2.2Time-varyingtemperaturefieldofbridgetower
Longspansuspensionbridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffects
inducedbysolarradiationandambientairtemperature.Theheattransferfromsurroundingenvironment
mayinducetemperaturevariationatbridgecomponentsandtherebyproducestructuraldeformationand
thermalstressesduetoredundancy.Thermaleffectsonlongspanbridgeshavebeeninvestigatedacrossthe
worldtosimulatethetemperaturedistribution ofbridgesandpredictthestructuralresponses.Thermal
effectsonbridgeshavebeeninvestigatedsincethe1960s.Withtherapiddevelopmentofcomputational
methodsandcomputertechnology,anumberofone-dimensional tothree-dimensional finite element
modelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermal
effectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspension
bridgesarequitedifferent fromthoseofcommonconcretebridges.Itisdifficult andinsufficient to
4
investigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Toexaminethefeasibilityandvalidityoftheproposedapproach,thetowersegmentofalongspansuspensionbridgeconstructedinChinaistakenastheexample.TsingMaBridge(Fig4)inHongKongisalongspansuspensionbridgecarryingadualthree-lanehighwayontheupperlevelofthebridgedeckandtworailwaytracksandtwoprotectedcarriagewaysonthelowerlevelwithinthebridgedeck.ItspansthemainshippingchannelbetweentheTsingYiIslandandtheMaWanIslandwithamainspanof1377mandatotallengthof2132m.Theheightofthetwobridgetowers,theTsingYiTowerandtheMaWanTower,isabout206m,measuredfromthebaseleveltothetowersaddle.Thetwotowersarereinforcedconcretestructureshavingtworeinforcedconcretelegslinkedbyfourreinforcedconcretecross-beamsandsupportedbymassivereinforcedconcreteslabsfoundoncompetentrock(seeFig.1).Thetwotowerssharealmostidenticalstructuralandgeometricfeatures,exceptthatthetopmostportalbeamoftheMaWantoweris0.15mhigherthanthecounterpartoftheTsingYitowerandthustheheightofthetowerlegs.
Fig4Configurationofbridgetower
5
Fig.5Finiteelementofatowersegment
Inthispart,byassumingthetemperaturealongthebridgeheightisconstant,atypicalbridgetowersectionisanalyzedtoobtainthetemperaturedistributionofthesegment.Finefiniteelementmodelofthetowersectionisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithinthecomponentswiththeaidofthecommercialsoftwarepackage.Themethodologyemployedinthepapercanbeappliedtootherlong-spanbridgesaswell.
2.3Temperaturevariationandthermalstressesonconcreteslab
Concreteslabaresubjectedtodaily,seasonal,andyearlythermalactionduetovariationsinsolarradiation
andambientairtemperature.Variationintemperatureofbuildingroofsmaycausenon-uniformdistribution
oftemperatureandinducethermalstress.Excessivethermalstressesmaydamagetheconcreteslab.In
addition,aseriesofexperimentsandfieldinvestigationshavedemonstratedthatthechangingtemperature
conditionsmayhaveamoresignificanteffectonstructuralbehaviourthancommonoperationalloads.Itis
reportedthatmanybuilding structuresaredamagedundertheintensive temperatureloading. The
temperaureeffectsonconcretestructureshavebeeninvestigatedbymanyresearchersacrosstheworld
since100yearsagoandmanyapproacheshavebeendevelopedtoexaminetheperformanceofconcrete
structuresundertemperatureloading.
Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsofconcretestructuresundercommonsolarradiation.Thesheltereffectsofthesolarradiationonthetime-varyingtemperaturedistributionoftheconcretestructureshavenotbeensystematicallyinvestigated.
Toexaminethefeasibilityandvalidityofproposedapproach,theconcreteslabofamulti-storeybuildingconstructedinsouthernChinaistakenastheexample.Thelengthandwidthoftheconcreteslabisabout5.0mand5.0m,respectively.TheconcretematerialoftheslabistheC40.ThefiniteelementmodeloftheconcreteslabisestablishedwiththeaidingofcommercialpackageANSYSasshowninFigure1.
Thefiniteelementmodeloftheconcreteslabisconstructedbyusingthesolid95element.
6
Fig6.ConfigurationofTsingMaBridge:(a)elevationand(b)crosssectionofbridegedeck.
Fig7.Finiteelementmodel
Inthispart,theevaluationoftime-varyingtemperaturedistributionandthermalstressesthermalstressesofaconcreteroofslabiscarriedout.Thesurfacetemperatureoftheconcreteslabismeasuredbyusingthethermalsensors.Theambienttemperatureiscollectedasthethermalboundaryconditionsforthethermalcomputation.FinefiniteelementmodeloftheconcreteslabisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithintheslabwiththeaidofthecommercialsoftwarepackageANSYS.Thesolarradiationmodelisutilizedtoestimatethesolarradiationreceivedby
7
theslabandthesheltereffectsarealsotakenintoconsideration.Thenumerical modelscansuccessfully
predictthestructuraltemperatureatdifferenttime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcreteslabbasedonthesolarradiationmodelagreeswellwithmeasurementresults.Thethermalgradientoftheconcreteslabinthethicknessdirectionisobvious.Themethodologyemployedinthepapercanbeappliedtootherconcretestructuresaswell.
3Conclusions
Thispaperreviewstemperatureeffectonvariationsinmodalpropertiesofcivilstructures.Moststudiesshowthatanincreaseintemperatureleadstoadecreaseinstructuralfrequencies,whereastemperaturehaslittleeffectonmodeshapes,anditseffectondampinghasnotbeenwellunderstoodbecauseoflargeuncertaintyofdamping.Threelaboratory-testedmodelsandtwofield-monitoredlargescalestructureshavebeeninvestigated.Besidessimilarconclusionsasotherresearchershavefound,thefollowingconclusionscanbedrawnfromthepresentstudy:
Variationsinfrequenciesarecausedmainlybythechangeinthemodulusofamaterialunderdifferenttemperatures.Thatis,modalfrequenciesofthesteelstructures,thealuminumbeam,andtheRCstructuresdecreasebyabout0.02,0.03,and0.15%,respectively,whentemperatureincreasesbyonedegreeCelsius,regardlessofmodesandstructuraltypes.Frequenciesofconcretestructuresaremoresensitivetotemperaturechangethanmetallicstructures.
Modeshapesofhigh-risestructuresmayvaryatdifferenttimeinstantsastemperaturesofdifferentcomponentsvaryaswell.Thisisdifferentfromthesituationofsomebridges,inwhichtemperaturesalongthelongitudinaldirectionareregardedasidentical.
Thetemperaturedistributionoflarge-scalestructuresisusuallynon-uniform.Differentcomponentshavedifferentcontributionstotheglobalfrequencies.Usingairtemperatureoraveragedtemperatureofafewmeasurementpointsmayleadtoincorrectquantitativerelationsbetweentemperatureandfrequencies.Heat-transferanalysiscanprovidemorecomprehensivetemperaturedistribution.Thenaglobaleigenvalueanalysiscombiningtherelationofmodulustotemperaturecanpredictamoreaccuraterelationbetweentemperatureandfrequencies.
Young’smodulusofconcreteisusuallymeasuredfromultrasonicmethodsorstress–straindiagram,whichexhibitssignificantuncertainties.Inthenaturalcondition,temperaturevariationisnotsignificant
andthusthemodulusthermalcoefficientisverydifficulttobemeasuredaccurately.Ontheotherhand,vibrationfrequencyofsimplestructurescanbemeasuredwithhighaccuracy,thankstotherapiddevelopmentofhardwareandanalyticaltechniquesinmodaltesting.Inaddition,modaltestingisa
nondestructivetechniqueandcanbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Thisis
anotheradvantageofthevibration-basedmethodasthetraditionaluni-axialcompressiontest maycause
damagetothespecimenandthuscannotbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Consequently,thevibration-basedmethodcanbeapromisingalternativeapproachtomeasurethematerialthermalcoefficientofmodulus:largertemperaturevariation,largerfrequencychanges,andthusresultsinamoreaccuratethermalcoefficientofmodulus.
8
Forpracticalstructures,factorssuchasvaryingboundaryconditions,loadconditions,anddamagesmayalsoaffectthestructuralvibrationproperties.Measurementnoisemayalsomaskthisvariation.Inaddition,itisverydifficulttoseparatetheeffectsfromdifferentsources.Therefore,controlledlaboratory
experimentsarenecessaryandimperativetoprovideaccurateandreliableresultsregardingthetemperature
effectonthestructural vibrationproperties.Inlaboratoryexperimentsinthispaper,varyingtemperature
canbethemainreasonofthefrequencychangesandfrequenciescanbemeasuredveryaccurately.For
example,thefirstauthorhasconductedamodaltestingonaRCslabrepeatedlyunderastabletemperature
condition.Itshownthatthecoefficientofvariation(ratioofstandarddeviationtomeanvalue)ofthefirst
fourmodalfrequencieswere0.04,0.09,0.31,and0.35%,respectively,whichisequivalenttoabout0.3–2.3degreestemperaturevariationofconcrete.Doeblingetal.alsoestimat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TS 7339:2024 EN Information technology - Cloud computing - Overview of platform capabilities type and platform as a service
- 【正版授权】 ISO 37111:2024 EN Sustainable cities and communities - Urban settlements - Guidance for a flexible approach to phased implementation of ISO 37101
- 2025年度大清包劳务合同(市政道路施工管理协议)
- 2025年度废铁进出口代理与运输服务合同
- 2025年度科技展会场地布置及维护服务合同
- 2025年起动脚蹬杆项目建议书
- 2025年超低频振动标准合作协议书
- 多元化教学方法实施方案计划
- 仓库工作总结计划指引
- 社会媒体策略的实践与回顾计划
- 《(近)零碳园区评价技术规范》
- 微信、抖音、快手等社交平台管理制度
- 保安反恐防暴培训
- 档案管理培训
- 私密品牌年度规划
- ××管业分销市场操作方案
- 《向量共线定理》同步课件
- 小学数学学习经验交流课件
- 信永中和在线测评85题
- 2024年第二批政府专职消防员招录报名表
- DB41-T 2704-2024 森林抚育技术规程
评论
0/150
提交评论