




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LiteratureReviewaboutSolarRadiation-induced
ThermalEffectonConcreteBridge
Abstract:Changingenvironmentalconditions,especiallytemperature,havebeenobservedtobeacomplicatedfactoraffectingvibrationproperties,suchasfrequencies,modeshapes,anddampingofcivilstructures.Thispaperreviewstechnicalliteratureconcerningsolarradiation-inducedtemperatureeffectonconcretebridge.Mostofthesestudiesfocusonvariationsinfrequenciesofbridgestructures,withsomestudiesonvariationsinmodeshapesanddampingandothertypesofstructures.Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldandthermalstressesatdifferenttime.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.Keyword:temperature;literature;bridgestructures;methodology
1Introduction
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thethermaleffectsonconcretebridgesevenlongspanbridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.Withtherapiddevelopmentofcomputationalmethodsandcomputertechnology,anumberofone-dimensionaltothree-dimensionalfiniteelementmodelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspensionbridgesarequitedifferentfromthoseofcommonconcretebridges.Itisdifficultandinsufficienttoinvestigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Zukinvestigatedthethermalbehaviorofseveralconcretebridgesandfoundthatthetemperaturedistributionwasaffectedbyairtemperature,wind,humidity,intensityofsolarradiationandmaterialtype.Adamsetal.investigatedtherelationbetweentemperatureandtheaxialresonantfrequencyofabar.Cornwelletal.investigatedthethermalvariationofdynamicpropertiesoftheAlamosaCanyonBridge.Cappslatermeasuredtemperatureandtemperature-inducedlongitudinalmovementsonasteelboxbridgeintheUK.EarlystudiesinthefieldincludethoseofPriesleyandChurchwardandSokai.AskegaardandMossingstudiedathree-spanRCfootbridgeandobserveda10%seasonalhangeinfrequencyovera3-yearperiod.Cornwelletal.investigatedthethermalvariationsinthedynamicpropertiesoftheAlamosaCanyonBridgeandfoundabout5%dailychangesinthefirstthreenaturalfrequencies.PeetersandDeRoeck
1
monitoredtheZ24Bridgecontinuouslyfornearlyayearandtheyreportedabilinearrelationbetweenthefirsttwofrequenciesandthestructuraltemperature.Theyfoundthatthetwofrequenciesincreasedbyabout10%whentemperaturedecreasedfrom0to-7℃.Fortemperaturesabove0℃,thefirstfrequencydecreasedslightlywhenthewearingsurfacetemperaturewentup,whereasthesecondfrequencyincreasedslightlywhenthedecksoffittemperaturewentup.FuandDeWolfstudiedatwo-span,slightlyskewedcompositebridgeandfoundthattheexpansionbearingswereapproximatelypartiallyconstrainedbelow
F.Thefirstthreefrequenciesdecreasedby12.3,16.8,and9.0%respectively,asthetemperatureincreasedfromF(°-17.8℃)toapproximately60F(15.°6℃),whereastheychangedlittleasthetemperaturewasabove60F°.Theauthorsthensimulatedathermalaxialloadandappliedittothegirdereccentricallyforcalculatingthefrequenciesunderdifferenttemperatures.Thechangeinfrequenciesagreedwellwiththemeasurement.Nietal.extracted1-yearmodalpropertiesoftheTingKaucable-stayedbridgeinHongKong.Therelativevariationsinthemeasuredmodalfrequencies(i.e.,theratiooffrequencychangetoaveragefrequencyforeachmode)underweakwindconditionsrangedbetween1.7(the8thmode)and6.7%
(the1stmode)whenbridgetemperaturesrangedbetween3and53 ℃.Theyconcludedthattheeffective
temperature(i.e.,temperatureaveragedoverthecrosssectionweightedbyareas)wasinsufficientinformulatingagoodcorrelationbetweenthemodalfrequenciesandtemperaturesbecauseoftheexistenceoftemperaturegradientoverthecrosssection.MacdonaldandDaniellinvestigatedvariationsinnatural
frequenciesoftheSecondSevernCrossingcablestayedbridgebecauseofwind,temperature,andtrafficloading.Theyreportedthattherewasnoapparenttrendbetweenthenaturalfrequenciesandthemean
bridgedecktemperaturebecausethetemperaturechangewassmall.Desjardinesetal.studiedthevariationsinfrequenciesoftheConfederationBridge(madeofpre-stressedconcrete)overa6-monthperiod.Theyreportedacleartrendofreductioninthemodalfrequenciesbyabout4%,whentheaveragetemperatureof
theconcreteofthebridgevariedfrom-20to+25℃.LiuandDeWolfreportedthat,duringa1-yearmeasurement,thefirstthreefrequenciesofacurvedconcreteboxbridgedecreasedwhenconcrete
temperatureincreased.Alinearregressionanalysisshowedthatfrequenciesdecreasedby0.007,0.008,and0.007HzastemperatureincreasedbyoneFahrenheitdegree,whichisequivalentto0.8,0.7,and0.3%perdegreeCelsius.TheYunyangSuspensionBridgewitha1,490-mmainspanexperiencedabout2%variationinthefirstsixmodalfrequenciesduringaperiodof10months,astheambienttemperatureofthesteel
bridgevariedfrom-5to+50℃.During16daysofcontinuousmonitoringofacable-stayedbridge,Lietal.foundthatthefirstsixfrequenciesvariedbyabout1.5–3.2%asambienttemperaturechangedfrom-11.5to+3.7℃.
Alternatively,fieldmeasurmentisaneffectiveyetpracticalapproachtoobtaintheinformationofbridgetemperatureenvironment,whichprovidesthepossibilitytocarryouttemperatureeffectevaluationfromthepracticalviewpoint.Mostofthecurrentinvestigationsmainlyfocusonthethermalassessmentofbridgedeck.Thefieldmeasurementcanonlyobtainthetemperaturevaluesoflimitedtestingpointsinsteadofthedetailedthermalgradientsoftheconcretestructures.Thetime-varyingeffectsoftemperatureofconcretebridgepiershavenotbeensystematicallyinvestigated.
2
2ThermalEffectonConcreteBridge
2.1Temperaturevariationandthermalstressesonconcretebridgepiers
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thetemperatureeffectsonconcretebridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.
Arealhighwaybridge(Fig1) constructedbyconcreteinnorthernChinaistakenastheexampleto
examinethefeasibilityoftheproposedanalyticalapproach.Thebirdeyeviewofthebridge’sisdisplayedinFigure1.Thebridgehasnightspansandthelengthforasinglespanis30m.Thetotalbridgelengthis278.2m.Thebridgepiershavetherectangulartubesizes.Thegeometricsizeofthepiercrosssectionis
2.5minwidthand6.5minlength.Thethicknessofthecrosssectionis0.5m.Thetime-varyingtemperaturefieldsofthepiersurfacearemeasuredbyusingthethermalinfraredimager.
Fig1.Birds’eyeviewofthebridge
Inthispart,dynamictemperaturefieldsandthermalstressesofaconcretepierareactivelystudiedwiththeaidingofthecommercialpackageANSYS.Thedifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionandcomputethethermaldeformationwithintheconcretepier.Thesurfacetemperatureofthepierismeasuredbyusingthethermalinfraredimager.Theambienttemperatureandwindvelocityarealsocollectedatthesametime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcretepieragreeswellwithmeasurementresults.Thethermalgradientof
theconcreteinthethicknessdirectionisalittlelarge.Thehorizontaldeformationismuchlargerthanthatinverticaldeformationduetotheinfluenceoftheconstraintsonthetopandbottomsidesofthepier.Thethermalstressesoftheexamplebridgepierarenotverylargeexceptforthelocalareasontopofthepiers.
3
Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldatdifferenttimeinstantthestructuraltime-varyingtemperatureeffects.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.
Fig2.Temperaturefieldsofthebridgepier
Fig3.Finiteelementmodel
2.2Time-varyingtemperaturefieldofbridgetower
Longspansuspensionbridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffects
inducedbysolarradiationandambientairtemperature.Theheattransferfromsurroundingenvironment
mayinducetemperaturevariationatbridgecomponentsandtherebyproducestructuraldeformationand
thermalstressesduetoredundancy.Thermaleffectsonlongspanbridgeshavebeeninvestigatedacrossthe
worldtosimulatethetemperaturedistribution ofbridgesandpredictthestructuralresponses.Thermal
effectsonbridgeshavebeeninvestigatedsincethe1960s.Withtherapiddevelopmentofcomputational
methodsandcomputertechnology,anumberofone-dimensional tothree-dimensional finite element
modelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermal
effectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspension
bridgesarequitedifferent fromthoseofcommonconcretebridges.Itisdifficult andinsufficient to
4
investigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Toexaminethefeasibilityandvalidityoftheproposedapproach,thetowersegmentofalongspansuspensionbridgeconstructedinChinaistakenastheexample.TsingMaBridge(Fig4)inHongKongisalongspansuspensionbridgecarryingadualthree-lanehighwayontheupperlevelofthebridgedeckandtworailwaytracksandtwoprotectedcarriagewaysonthelowerlevelwithinthebridgedeck.ItspansthemainshippingchannelbetweentheTsingYiIslandandtheMaWanIslandwithamainspanof1377mandatotallengthof2132m.Theheightofthetwobridgetowers,theTsingYiTowerandtheMaWanTower,isabout206m,measuredfromthebaseleveltothetowersaddle.Thetwotowersarereinforcedconcretestructureshavingtworeinforcedconcretelegslinkedbyfourreinforcedconcretecross-beamsandsupportedbymassivereinforcedconcreteslabsfoundoncompetentrock(seeFig.1).Thetwotowerssharealmostidenticalstructuralandgeometricfeatures,exceptthatthetopmostportalbeamoftheMaWantoweris0.15mhigherthanthecounterpartoftheTsingYitowerandthustheheightofthetowerlegs.
Fig4Configurationofbridgetower
5
Fig.5Finiteelementofatowersegment
Inthispart,byassumingthetemperaturealongthebridgeheightisconstant,atypicalbridgetowersectionisanalyzedtoobtainthetemperaturedistributionofthesegment.Finefiniteelementmodelofthetowersectionisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithinthecomponentswiththeaidofthecommercialsoftwarepackage.Themethodologyemployedinthepapercanbeappliedtootherlong-spanbridgesaswell.
2.3Temperaturevariationandthermalstressesonconcreteslab
Concreteslabaresubjectedtodaily,seasonal,andyearlythermalactionduetovariationsinsolarradiation
andambientairtemperature.Variationintemperatureofbuildingroofsmaycausenon-uniformdistribution
oftemperatureandinducethermalstress.Excessivethermalstressesmaydamagetheconcreteslab.In
addition,aseriesofexperimentsandfieldinvestigationshavedemonstratedthatthechangingtemperature
conditionsmayhaveamoresignificanteffectonstructuralbehaviourthancommonoperationalloads.Itis
reportedthatmanybuilding structuresaredamagedundertheintensive temperatureloading. The
temperaureeffectsonconcretestructureshavebeeninvestigatedbymanyresearchersacrosstheworld
since100yearsagoandmanyapproacheshavebeendevelopedtoexaminetheperformanceofconcrete
structuresundertemperatureloading.
Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsofconcretestructuresundercommonsolarradiation.Thesheltereffectsofthesolarradiationonthetime-varyingtemperaturedistributionoftheconcretestructureshavenotbeensystematicallyinvestigated.
Toexaminethefeasibilityandvalidityofproposedapproach,theconcreteslabofamulti-storeybuildingconstructedinsouthernChinaistakenastheexample.Thelengthandwidthoftheconcreteslabisabout5.0mand5.0m,respectively.TheconcretematerialoftheslabistheC40.ThefiniteelementmodeloftheconcreteslabisestablishedwiththeaidingofcommercialpackageANSYSasshowninFigure1.
Thefiniteelementmodeloftheconcreteslabisconstructedbyusingthesolid95element.
6
Fig6.ConfigurationofTsingMaBridge:(a)elevationand(b)crosssectionofbridegedeck.
Fig7.Finiteelementmodel
Inthispart,theevaluationoftime-varyingtemperaturedistributionandthermalstressesthermalstressesofaconcreteroofslabiscarriedout.Thesurfacetemperatureoftheconcreteslabismeasuredbyusingthethermalsensors.Theambienttemperatureiscollectedasthethermalboundaryconditionsforthethermalcomputation.FinefiniteelementmodeloftheconcreteslabisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithintheslabwiththeaidofthecommercialsoftwarepackageANSYS.Thesolarradiationmodelisutilizedtoestimatethesolarradiationreceivedby
7
theslabandthesheltereffectsarealsotakenintoconsideration.Thenumerical modelscansuccessfully
predictthestructuraltemperatureatdifferenttime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcreteslabbasedonthesolarradiationmodelagreeswellwithmeasurementresults.Thethermalgradientoftheconcreteslabinthethicknessdirectionisobvious.Themethodologyemployedinthepapercanbeappliedtootherconcretestructuresaswell.
3Conclusions
Thispaperreviewstemperatureeffectonvariationsinmodalpropertiesofcivilstructures.Moststudiesshowthatanincreaseintemperatureleadstoadecreaseinstructuralfrequencies,whereastemperaturehaslittleeffectonmodeshapes,anditseffectondampinghasnotbeenwellunderstoodbecauseoflargeuncertaintyofdamping.Threelaboratory-testedmodelsandtwofield-monitoredlargescalestructureshavebeeninvestigated.Besidessimilarconclusionsasotherresearchershavefound,thefollowingconclusionscanbedrawnfromthepresentstudy:
Variationsinfrequenciesarecausedmainlybythechangeinthemodulusofamaterialunderdifferenttemperatures.Thatis,modalfrequenciesofthesteelstructures,thealuminumbeam,andtheRCstructuresdecreasebyabout0.02,0.03,and0.15%,respectively,whentemperatureincreasesbyonedegreeCelsius,regardlessofmodesandstructuraltypes.Frequenciesofconcretestructuresaremoresensitivetotemperaturechangethanmetallicstructures.
Modeshapesofhigh-risestructuresmayvaryatdifferenttimeinstantsastemperaturesofdifferentcomponentsvaryaswell.Thisisdifferentfromthesituationofsomebridges,inwhichtemperaturesalongthelongitudinaldirectionareregardedasidentical.
Thetemperaturedistributionoflarge-scalestructuresisusuallynon-uniform.Differentcomponentshavedifferentcontributionstotheglobalfrequencies.Usingairtemperatureoraveragedtemperatureofafewmeasurementpointsmayleadtoincorrectquantitativerelationsbetweentemperatureandfrequencies.Heat-transferanalysiscanprovidemorecomprehensivetemperaturedistribution.Thenaglobaleigenvalueanalysiscombiningtherelationofmodulustotemperaturecanpredictamoreaccuraterelationbetweentemperatureandfrequencies.
Young’smodulusofconcreteisusuallymeasuredfromultrasonicmethodsorstress–straindiagram,whichexhibitssignificantuncertainties.Inthenaturalcondition,temperaturevariationisnotsignificant
andthusthemodulusthermalcoefficientisverydifficulttobemeasuredaccurately.Ontheotherhand,vibrationfrequencyofsimplestructurescanbemeasuredwithhighaccuracy,thankstotherapiddevelopmentofhardwareandanalyticaltechniquesinmodaltesting.Inaddition,modaltestingisa
nondestructivetechniqueandcanbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Thisis
anotheradvantageofthevibration-basedmethodasthetraditionaluni-axialcompressiontest maycause
damagetothespecimenandthuscannotbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Consequently,thevibration-basedmethodcanbeapromisingalternativeapproachtomeasurethematerialthermalcoefficientofmodulus:largertemperaturevariation,largerfrequencychanges,andthusresultsinamoreaccuratethermalcoefficientofmodulus.
8
Forpracticalstructures,factorssuchasvaryingboundaryconditions,loadconditions,anddamagesmayalsoaffectthestructuralvibrationproperties.Measurementnoisemayalsomaskthisvariation.Inaddition,itisverydifficulttoseparatetheeffectsfromdifferentsources.Therefore,controlledlaboratory
experimentsarenecessaryandimperativetoprovideaccurateandreliableresultsregardingthetemperature
effectonthestructural vibrationproperties.Inlaboratoryexperimentsinthispaper,varyingtemperature
canbethemainreasonofthefrequencychangesandfrequenciescanbemeasuredveryaccurately.For
example,thefirstauthorhasconductedamodaltestingonaRCslabrepeatedlyunderastabletemperature
condition.Itshownthatthecoefficientofvariation(ratioofstandarddeviationtomeanvalue)ofthefirst
fourmodalfrequencieswere0.04,0.09,0.31,and0.35%,respectively,whichisequivalenttoabout0.3–2.3degreestemperaturevariationofconcrete.Doeblingetal.alsoestimat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年福建事业单位考试自我提升的重要途径试题及答案
- 2024年农业经理人考试重要文件试题及答案
- 高效解决园艺师考试问题的策略试题及答案
- 五年级数学(小数除法)计算题专项练习及答案
- 园艺师考试相关行为规范的理解试题及答案
- 2024年农艺师考生社会适应试题及答案
- 2024年职场选择福建事业单位考试试题及答案
- 花艺师考试复习的计划制定与落实试题及答案
- 2024年农艺师考试准备心得体会试题及答案
- 公司面试行测试题及答案
- GB/T 28724-2012固体有机化学品熔点的测定差示扫描量热法
- GB/T 23743-2009饲料中凝固酶阳性葡萄球菌的微生物学检验Baird-Parker琼脂培养基计数法
- 祛痰药镇咳药课件
- 英格索兰空压机基础知识课件
- 诸葛亮三国古代名人人物介绍PPT
- 初中综合实践活动《手工橡皮章》课件
- 钢结构防火涂料的施工方案
- 国资委风险预警-47页PPT课件
- 金风1.5MW机组液压、偏航及润滑控制系统
- 跑冒油事故应急预案
- B类表(施工单位报审、报验用表)
评论
0/150
提交评论