版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LiteratureReviewaboutSolarRadiation-induced
ThermalEffectonConcreteBridge
Abstract:Changingenvironmentalconditions,especiallytemperature,havebeenobservedtobeacomplicatedfactoraffectingvibrationproperties,suchasfrequencies,modeshapes,anddampingofcivilstructures.Thispaperreviewstechnicalliteratureconcerningsolarradiation-inducedtemperatureeffectonconcretebridge.Mostofthesestudiesfocusonvariationsinfrequenciesofbridgestructures,withsomestudiesonvariationsinmodeshapesanddampingandothertypesofstructures.Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldandthermalstressesatdifferenttime.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.Keyword:temperature;literature;bridgestructures;methodology
1Introduction
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thethermaleffectsonconcretebridgesevenlongspanbridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.Withtherapiddevelopmentofcomputationalmethodsandcomputertechnology,anumberofone-dimensionaltothree-dimensionalfiniteelementmodelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspensionbridgesarequitedifferentfromthoseofcommonconcretebridges.Itisdifficultandinsufficienttoinvestigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Zukinvestigatedthethermalbehaviorofseveralconcretebridgesandfoundthatthetemperaturedistributionwasaffectedbyairtemperature,wind,humidity,intensityofsolarradiationandmaterialtype.Adamsetal.investigatedtherelationbetweentemperatureandtheaxialresonantfrequencyofabar.Cornwelletal.investigatedthethermalvariationofdynamicpropertiesoftheAlamosaCanyonBridge.Cappslatermeasuredtemperatureandtemperature-inducedlongitudinalmovementsonasteelboxbridgeintheUK.EarlystudiesinthefieldincludethoseofPriesleyandChurchwardandSokai.AskegaardandMossingstudiedathree-spanRCfootbridgeandobserveda10%seasonalhangeinfrequencyovera3-yearperiod.Cornwelletal.investigatedthethermalvariationsinthedynamicpropertiesoftheAlamosaCanyonBridgeandfoundabout5%dailychangesinthefirstthreenaturalfrequencies.PeetersandDeRoeck
1
monitoredtheZ24Bridgecontinuouslyfornearlyayearandtheyreportedabilinearrelationbetweenthefirsttwofrequenciesandthestructuraltemperature.Theyfoundthatthetwofrequenciesincreasedbyabout10%whentemperaturedecreasedfrom0to-7℃.Fortemperaturesabove0℃,thefirstfrequencydecreasedslightlywhenthewearingsurfacetemperaturewentup,whereasthesecondfrequencyincreasedslightlywhenthedecksoffittemperaturewentup.FuandDeWolfstudiedatwo-span,slightlyskewedcompositebridgeandfoundthattheexpansionbearingswereapproximatelypartiallyconstrainedbelow
F.Thefirstthreefrequenciesdecreasedby12.3,16.8,and9.0%respectively,asthetemperatureincreasedfromF(°-17.8℃)toapproximately60F(15.°6℃),whereastheychangedlittleasthetemperaturewasabove60F°.Theauthorsthensimulatedathermalaxialloadandappliedittothegirdereccentricallyforcalculatingthefrequenciesunderdifferenttemperatures.Thechangeinfrequenciesagreedwellwiththemeasurement.Nietal.extracted1-yearmodalpropertiesoftheTingKaucable-stayedbridgeinHongKong.Therelativevariationsinthemeasuredmodalfrequencies(i.e.,theratiooffrequencychangetoaveragefrequencyforeachmode)underweakwindconditionsrangedbetween1.7(the8thmode)and6.7%
(the1stmode)whenbridgetemperaturesrangedbetween3and53 ℃.Theyconcludedthattheeffective
temperature(i.e.,temperatureaveragedoverthecrosssectionweightedbyareas)wasinsufficientinformulatingagoodcorrelationbetweenthemodalfrequenciesandtemperaturesbecauseoftheexistenceoftemperaturegradientoverthecrosssection.MacdonaldandDaniellinvestigatedvariationsinnatural
frequenciesoftheSecondSevernCrossingcablestayedbridgebecauseofwind,temperature,andtrafficloading.Theyreportedthattherewasnoapparenttrendbetweenthenaturalfrequenciesandthemean
bridgedecktemperaturebecausethetemperaturechangewassmall.Desjardinesetal.studiedthevariationsinfrequenciesoftheConfederationBridge(madeofpre-stressedconcrete)overa6-monthperiod.Theyreportedacleartrendofreductioninthemodalfrequenciesbyabout4%,whentheaveragetemperatureof
theconcreteofthebridgevariedfrom-20to+25℃.LiuandDeWolfreportedthat,duringa1-yearmeasurement,thefirstthreefrequenciesofacurvedconcreteboxbridgedecreasedwhenconcrete
temperatureincreased.Alinearregressionanalysisshowedthatfrequenciesdecreasedby0.007,0.008,and0.007HzastemperatureincreasedbyoneFahrenheitdegree,whichisequivalentto0.8,0.7,and0.3%perdegreeCelsius.TheYunyangSuspensionBridgewitha1,490-mmainspanexperiencedabout2%variationinthefirstsixmodalfrequenciesduringaperiodof10months,astheambienttemperatureofthesteel
bridgevariedfrom-5to+50℃.During16daysofcontinuousmonitoringofacable-stayedbridge,Lietal.foundthatthefirstsixfrequenciesvariedbyabout1.5–3.2%asambienttemperaturechangedfrom-11.5to+3.7℃.
Alternatively,fieldmeasurmentisaneffectiveyetpracticalapproachtoobtaintheinformationofbridgetemperatureenvironment,whichprovidesthepossibilitytocarryouttemperatureeffectevaluationfromthepracticalviewpoint.Mostofthecurrentinvestigationsmainlyfocusonthethermalassessmentofbridgedeck.Thefieldmeasurementcanonlyobtainthetemperaturevaluesoflimitedtestingpointsinsteadofthedetailedthermalgradientsoftheconcretestructures.Thetime-varyingeffectsoftemperatureofconcretebridgepiershavenotbeensystematicallyinvestigated.
2
2ThermalEffectonConcreteBridge
2.1Temperaturevariationandthermalstressesonconcretebridgepiers
Manyconcretebridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffectsinducedbysolarradiationandambientairtemperature.Experimentsandfieldmeasurementshaveindicatedthatchangingthermalconditionsmayhaveamoresignificanteffectonconcretebridgebehaviorthanoperationalloads.Theheattransferfromsurroundingenvironmentmayinducetemperaturevariationatconcretecomponentsandtherebyproducestructuraldeformationandthermalstressesduetoredundancy.Thetemperatureeffectsonconcretebridgeshavebeeninvestigatedbymanyresearchersacrosstheworldsince50yearsagoandsomeapproacheshavebeendevelopedtoexaminetheperformanceofbridgessubjectedtotemperatureloading.
Arealhighwaybridge(Fig1) constructedbyconcreteinnorthernChinaistakenastheexampleto
examinethefeasibilityoftheproposedanalyticalapproach.Thebirdeyeviewofthebridge’sisdisplayedinFigure1.Thebridgehasnightspansandthelengthforasinglespanis30m.Thetotalbridgelengthis278.2m.Thebridgepiershavetherectangulartubesizes.Thegeometricsizeofthepiercrosssectionis
2.5minwidthand6.5minlength.Thethicknessofthecrosssectionis0.5m.Thetime-varyingtemperaturefieldsofthepiersurfacearemeasuredbyusingthethermalinfraredimager.
Fig1.Birds’eyeviewofthebridge
Inthispart,dynamictemperaturefieldsandthermalstressesofaconcretepierareactivelystudiedwiththeaidingofthecommercialpackageANSYS.Thedifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionandcomputethethermaldeformationwithintheconcretepier.Thesurfacetemperatureofthepierismeasuredbyusingthethermalinfraredimager.Theambienttemperatureandwindvelocityarealsocollectedatthesametime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcretepieragreeswellwithmeasurementresults.Thethermalgradientof
theconcreteinthethicknessdirectionisalittlelarge.Thehorizontaldeformationismuchlargerthanthatinverticaldeformationduetotheinfluenceoftheconstraintsonthetopandbottomsidesofthepier.Thethermalstressesoftheexamplebridgepierarenotverylargeexceptforthelocalareasontopofthepiers.
3
Itisseenthatthenumericalmodelscansuccessfullypredictthestructuraltemperaturefieldatdifferenttimeinstantthestructuraltime-varyingtemperatureeffects.Themethodologyemployedinthepapercanbeappliedtootherconcretebridgesaswell.
Fig2.Temperaturefieldsofthebridgepier
Fig3.Finiteelementmodel
2.2Time-varyingtemperaturefieldofbridgetower
Longspansuspensionbridgesaresubjectedtodaily,seasonalandyearlyenvironmentalthermaleffects
inducedbysolarradiationandambientairtemperature.Theheattransferfromsurroundingenvironment
mayinducetemperaturevariationatbridgecomponentsandtherebyproducestructuraldeformationand
thermalstressesduetoredundancy.Thermaleffectsonlongspanbridgeshavebeeninvestigatedacrossthe
worldtosimulatethetemperaturedistribution ofbridgesandpredictthestructuralresponses.Thermal
effectsonbridgeshavebeeninvestigatedsincethe1960s.Withtherapiddevelopmentofcomputational
methodsandcomputertechnology,anumberofone-dimensional tothree-dimensional finite element
modelshavebeendevelopedsincethe1970s.Mostofthecurrentinvestigationsmainlyfocusonthermal
effectsonconcretebridges.Theconfigurationandperformanceoflongspanbridgessuchassuspension
bridgesarequitedifferent fromthoseofcommonconcretebridges.Itisdifficult andinsufficient to
4
investigatethebridgeperformancethoroughlybyusingthetemperaturedataatafewcomponentsonly.Therefore,calculationofthetemperaturedistributionofthebridgecomponentsisimperativetostudythetemperatureeffects.Alittleworkhasyetbeencarriedouttoexaminethetime-varyingtemperaturefieldofbridgetower.Thispaperaimstoinvestigatethetemperaturedistributionofatowerofalongspansuspensionbridge.
Toexaminethefeasibilityandvalidityoftheproposedapproach,thetowersegmentofalongspansuspensionbridgeconstructedinChinaistakenastheexample.TsingMaBridge(Fig4)inHongKongisalongspansuspensionbridgecarryingadualthree-lanehighwayontheupperlevelofthebridgedeckandtworailwaytracksandtwoprotectedcarriagewaysonthelowerlevelwithinthebridgedeck.ItspansthemainshippingchannelbetweentheTsingYiIslandandtheMaWanIslandwithamainspanof1377mandatotallengthof2132m.Theheightofthetwobridgetowers,theTsingYiTowerandtheMaWanTower,isabout206m,measuredfromthebaseleveltothetowersaddle.Thetwotowersarereinforcedconcretestructureshavingtworeinforcedconcretelegslinkedbyfourreinforcedconcretecross-beamsandsupportedbymassivereinforcedconcreteslabsfoundoncompetentrock(seeFig.1).Thetwotowerssharealmostidenticalstructuralandgeometricfeatures,exceptthatthetopmostportalbeamoftheMaWantoweris0.15mhigherthanthecounterpartoftheTsingYitowerandthustheheightofthetowerlegs.
Fig4Configurationofbridgetower
5
Fig.5Finiteelementofatowersegment
Inthispart,byassumingthetemperaturealongthebridgeheightisconstant,atypicalbridgetowersectionisanalyzedtoobtainthetemperaturedistributionofthesegment.Finefiniteelementmodelofthetowersectionisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithinthecomponentswiththeaidofthecommercialsoftwarepackage.Themethodologyemployedinthepapercanbeappliedtootherlong-spanbridgesaswell.
2.3Temperaturevariationandthermalstressesonconcreteslab
Concreteslabaresubjectedtodaily,seasonal,andyearlythermalactionduetovariationsinsolarradiation
andambientairtemperature.Variationintemperatureofbuildingroofsmaycausenon-uniformdistribution
oftemperatureandinducethermalstress.Excessivethermalstressesmaydamagetheconcreteslab.In
addition,aseriesofexperimentsandfieldinvestigationshavedemonstratedthatthechangingtemperature
conditionsmayhaveamoresignificanteffectonstructuralbehaviourthancommonoperationalloads.Itis
reportedthatmanybuilding structuresaredamagedundertheintensive temperatureloading. The
temperaureeffectsonconcretestructureshavebeeninvestigatedbymanyresearchersacrosstheworld
since100yearsagoandmanyapproacheshavebeendevelopedtoexaminetheperformanceofconcrete
structuresundertemperatureloading.
Mostofthecurrentinvestigationsmainlyfocusonthermaleffectsofconcretestructuresundercommonsolarradiation.Thesheltereffectsofthesolarradiationonthetime-varyingtemperaturedistributionoftheconcretestructureshavenotbeensystematicallyinvestigated.
Toexaminethefeasibilityandvalidityofproposedapproach,theconcreteslabofamulti-storeybuildingconstructedinsouthernChinaistakenastheexample.Thelengthandwidthoftheconcreteslabisabout5.0mand5.0m,respectively.TheconcretematerialoftheslabistheC40.ThefiniteelementmodeloftheconcreteslabisestablishedwiththeaidingofcommercialpackageANSYSasshowninFigure1.
Thefiniteelementmodeloftheconcreteslabisconstructedbyusingthesolid95element.
6
Fig6.ConfigurationofTsingMaBridge:(a)elevationand(b)crosssectionofbridegedeck.
Fig7.Finiteelementmodel
Inthispart,theevaluationoftime-varyingtemperaturedistributionandthermalstressesthermalstressesofaconcreteroofslabiscarriedout.Thesurfacetemperatureoftheconcreteslabismeasuredbyusingthethermalsensors.Theambienttemperatureiscollectedasthethermalboundaryconditionsforthethermalcomputation.FinefiniteelementmodeloftheconcreteslabisconstructedanddifferentboundaryconditionsareappliedtoobtainthetemperaturedistributionwithintheslabwiththeaidofthecommercialsoftwarepackageANSYS.Thesolarradiationmodelisutilizedtoestimatethesolarradiationreceivedby
7
theslabandthesheltereffectsarealsotakenintoconsideration.Thenumerical modelscansuccessfully
predictthestructuraltemperatureatdifferenttime.Themadeobservationsdemonstratethatthesimulatedtemperaturevariationoftheconcreteslabbasedonthesolarradiationmodelagreeswellwithmeasurementresults.Thethermalgradientoftheconcreteslabinthethicknessdirectionisobvious.Themethodologyemployedinthepapercanbeappliedtootherconcretestructuresaswell.
3Conclusions
Thispaperreviewstemperatureeffectonvariationsinmodalpropertiesofcivilstructures.Moststudiesshowthatanincreaseintemperatureleadstoadecreaseinstructuralfrequencies,whereastemperaturehaslittleeffectonmodeshapes,anditseffectondampinghasnotbeenwellunderstoodbecauseoflargeuncertaintyofdamping.Threelaboratory-testedmodelsandtwofield-monitoredlargescalestructureshavebeeninvestigated.Besidessimilarconclusionsasotherresearchershavefound,thefollowingconclusionscanbedrawnfromthepresentstudy:
Variationsinfrequenciesarecausedmainlybythechangeinthemodulusofamaterialunderdifferenttemperatures.Thatis,modalfrequenciesofthesteelstructures,thealuminumbeam,andtheRCstructuresdecreasebyabout0.02,0.03,and0.15%,respectively,whentemperatureincreasesbyonedegreeCelsius,regardlessofmodesandstructuraltypes.Frequenciesofconcretestructuresaremoresensitivetotemperaturechangethanmetallicstructures.
Modeshapesofhigh-risestructuresmayvaryatdifferenttimeinstantsastemperaturesofdifferentcomponentsvaryaswell.Thisisdifferentfromthesituationofsomebridges,inwhichtemperaturesalongthelongitudinaldirectionareregardedasidentical.
Thetemperaturedistributionoflarge-scalestructuresisusuallynon-uniform.Differentcomponentshavedifferentcontributionstotheglobalfrequencies.Usingairtemperatureoraveragedtemperatureofafewmeasurementpointsmayleadtoincorrectquantitativerelationsbetweentemperatureandfrequencies.Heat-transferanalysiscanprovidemorecomprehensivetemperaturedistribution.Thenaglobaleigenvalueanalysiscombiningtherelationofmodulustotemperaturecanpredictamoreaccuraterelationbetweentemperatureandfrequencies.
Young’smodulusofconcreteisusuallymeasuredfromultrasonicmethodsorstress–straindiagram,whichexhibitssignificantuncertainties.Inthenaturalcondition,temperaturevariationisnotsignificant
andthusthemodulusthermalcoefficientisverydifficulttobemeasuredaccurately.Ontheotherhand,vibrationfrequencyofsimplestructurescanbemeasuredwithhighaccuracy,thankstotherapiddevelopmentofhardwareandanalyticaltechniquesinmodaltesting.Inaddition,modaltestingisa
nondestructivetechniqueandcanbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Thisis
anotheradvantageofthevibration-basedmethodasthetraditionaluni-axialcompressiontest maycause
damagetothespecimenandthuscannotbecarriedoutrepeatedlyunderdifferenttemperatureconditions.Consequently,thevibration-basedmethodcanbeapromisingalternativeapproachtomeasurethematerialthermalcoefficientofmodulus:largertemperaturevariation,largerfrequencychanges,andthusresultsinamoreaccuratethermalcoefficientofmodulus.
8
Forpracticalstructures,factorssuchasvaryingboundaryconditions,loadconditions,anddamagesmayalsoaffectthestructuralvibrationproperties.Measurementnoisemayalsomaskthisvariation.Inaddition,itisverydifficulttoseparatetheeffectsfromdifferentsources.Therefore,controlledlaboratory
experimentsarenecessaryandimperativetoprovideaccurateandreliableresultsregardingthetemperature
effectonthestructural vibrationproperties.Inlaboratoryexperimentsinthispaper,varyingtemperature
canbethemainreasonofthefrequencychangesandfrequenciescanbemeasuredveryaccurately.For
example,thefirstauthorhasconductedamodaltestingonaRCslabrepeatedlyunderastabletemperature
condition.Itshownthatthecoefficientofvariation(ratioofstandarddeviationtomeanvalue)ofthefirst
fourmodalfrequencieswere0.04,0.09,0.31,and0.35%,respectively,whichisequivalenttoabout0.3–2.3degreestemperaturevariationofconcrete.Doeblingetal.alsoestimat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数学26.2《圆的对称性》(沪科版九年级下)
- 2026年剧本杀运营公司员工宿舍管理制度
- 2026年剧本杀运营公司行业监管对接管理制度
- 2026年剧本杀运营公司剧本与道具匹配管理制度
- 2025 小学四年级思想品德上册公共场合礼仪训练课件
- 2026及未来5年中国邮票行业市场现状调查及投资前景研判报告
- 2026年及未来5年中国数码摄像机行业市场运营现状及投资规划研究建议报告
- 2025年数字孪生技术在城市规划中的创新报告
- 光伏发电安全制度
- 保卫安全制度
- 西医内科学复习重点笔记
- 2023年运动控制工程师年度总结及下一年展望
- 8、中医科诊疗技术操作规范
- 夹套管施工方案
- 地面人工开挖施工方案
- 物业房屋中介合作协议
- 新郎父亲在婚礼上的精彩讲话稿范文(10篇)
- (山东)通风与空调工程施工资料表格大全(鲁TK001-057)
- 大鹏新区保护与发展综合规划(2013-2020)
- 战略成本1-6章toc经典案例
- DB37-T 5026-2022《居住建筑节能设计标准》
评论
0/150
提交评论