版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1.理解并掌握直线与平面平行的判定定理;(重点、难点)
2.进一步培养学生观察、发现的能力和空间想象能力;3.让学生了解空间与平面互相转换的数学思想.1.空间直线与平面的位置关系有哪几种?aaAaa//记作:2.如何判断直线和平面平行?
根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限伸长,平面无限延展,如何保证直线与平面没有公共点呢?a
在生活中,注意到门扇的两边是平行的.当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.
将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?你能抽象概括出几何图形吗?1.直线a在平面内还是在平面外?2.直线a与直线b共面吗?3.假如直线a与平面相交,交点会在哪?直线a在平面外a与b共面(因为a∥b)在直线b上如图,直线a在平面内的投影是直线b,回答以下问题直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.判定直线与平面平行的条件有几个,是什么?①
在平面外,即用符号语言可概括为:定理中的三个条件②在平面
内,即③
与平行,即(平行).线线平行线面平行例1求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF//平面BCD.分析:先写出已知,求证.
再结合图形证明.证明:连接BD.∵E、F分别是AB、AD中点∴EF//BD(三角形中位线的性质).由直线与平面平行的判定定理得:EF//平面BCD.1.要证明直线与平面平行可以运用判定定理;线线平行
线面平行2.能够运用定理的条件是要满足六个字:“面外、面内、平行”3.运用定理的关键是找平行线;找平行线又经常会用到三角形中位线定理.在△BDD1中,
C1CBAB1DA1D1EO例2如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,证明BD1∥平面AEC.证明:连结BD交AC于O,连结EO,
而EO平面AEC,∵E,O分别为DD1与BD的中点,∴∥平面AEC.∴EO∥=BD1平面AECP56练习2规律方法:中点问题可考虑利用中位线的性质解决.对判定定理的再认识②应用定理时,应注意三个条件是缺一不可的;③要证明直线与平面平行,只要在这个平面内找出一条直线与已知直线平行,把证明线面问题转化为证明线线问题.①它是证明直线与平面平行最常用最简易的方法;1.直线a∥平面α,平面α内有n条互相平行的直线,那么这n条直线和直线a()(A)全平行(B)全异面(C)全平行或全异面(D)不全平行或不全异面C2.以下命题(其中a,b表示直线,表示平面)①若a∥b,b,则a∥
②若a∥,b∥,则a∥b③若a∥b,b∥,则a∥
④若a∥,b,则a∥b其中正确命题的个数是(
)(A)0个(B)1个(C)2个(D)3个A(2)与AA′平行的平面是
;3.如图,长方体ABCD-A′B′C′D′中,(1)与AB平行的平面是
;(3)与AD平行的平面是
.平面平面平面平面平面平面1.证明直线与平面平行的方法:(1)利用定义;(2)利用判定定理.2.数学思想方法:转化的思想空间问题平面问题线线平行线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵阳幼儿师范高等专科学校《动画场景设计》2023-2024学年第一学期期末试卷
- 2025山西省安全员C证(专职安全员)考试题库
- 硅湖职业技术学院《面向对象技术》2023-2024学年第一学期期末试卷
- 2025甘肃省建筑安全员考试题库
- 广州幼儿师范高等专科学校《绿色建筑与绿色施工》2023-2024学年第一学期期末试卷
- 2025年四川建筑安全员-B证(项目经理)考试题库
- 广州卫生职业技术学院《温病学》2023-2024学年第一学期期末试卷
- 2025贵州建筑安全员B证(项目经理)考试题库
- 2025黑龙江省安全员-C证(专职安全员)考试题库
- 《ESD知识和控制》课件
- 人教版四年级上册竖式计算400题及答案
- 重庆开县2023-2024学年七年级上学期期末数学检测卷(含答案)
- 血气分析结果判读及临床应用护理课件
- 智能船舶与海洋工程:物联网在船舶与海洋工程中的应用
- 高速服务区经营分析报告
- 浙江省湖州市2022-2023学年四年级上学期数学期末试卷(含答案)
- 建井施工方案
- YMO青少年数学思维28届五年级全国总决赛试卷
- 个人业绩相关信息采集表
- 过敏性紫癜课件PPT
- 大学生暑期社会实践证明模板(20篇)
评论
0/150
提交评论