广东省江门市2022-2023学年数学高一下期末质量跟踪监视试题含解析_第1页
广东省江门市2022-2023学年数学高一下期末质量跟踪监视试题含解析_第2页
广东省江门市2022-2023学年数学高一下期末质量跟踪监视试题含解析_第3页
广东省江门市2022-2023学年数学高一下期末质量跟踪监视试题含解析_第4页
广东省江门市2022-2023学年数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A. B. C.5 D.62.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°3.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形4.将正整数排列如下:123456789101112131415……则图中数出现在()A.第行列 B.第行列 C.第行列 D.第行列5.函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称6.若,则下列不等式恒成立的是A. B. C. D.7.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.8.无论取何实数,直线恒过一定点,则该定点坐标为()A. B. C. D.9.已知,,,则它们的大小关系是()A. B. C. D.10.下列函数中是偶函数且最小正周期为的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_________________;12.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.13.中,若,,则角C的取值范围是________.14.设向量与向量共线,则实数等于__________.15.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.16.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.18.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔,速度为,飞行员在处先看到山顶的俯角为18°30′,经过后又在处看到山顶的俯角为81°(1)求飞机在处与山顶的距离(精确到);(2)求山顶的海拔高度(精确到)参考数据:,19.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、.20.数列中,,(为常数).(1)若,,成等差数列,求的值;(2)是否存在,使得为等比数列?并说明理由.21.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由已知可得,则,所以的最小值,应选答案C.2、D【解析】

根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.3、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题4、B【解析】

计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键.5、C【解析】

利用最小正周期为π,求出的值,根据平移得出,然后利用对称性求解.【详解】因为函数的最小正周期为π,所以,图象向左平移个单位后得到,由得到的函数是奇函数可得,即.令得,,故A,B均不正确;令得,,时可得C正确.故选C.【点睛】本题主要考查三角函数的图像变换和性质.平移变换时注意平移方向和对解析式的影响,性质求解一般利用整体换元意识来处理.6、D【解析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D7、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.8、A【解析】

通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.9、C【解析】因为,,故选C.10、A【解析】

本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【点睛】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据绝对值定义去掉绝对值符号后再解不等式.【详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【点睛】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.12、【解析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.13、;【解析】

由,利用正弦定理边角互化以及两角和的正弦公式可得,进而可得结果.【详解】由正弦定理可得,又,则,即,则,C是三角形的内角,则,故答案为:.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.14、3【解析】

利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.15、【解析】

由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.16、【解析】由,行驶了4小时,这只船的航行速度为海里/小时.【点睛】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.18、(1)14981m(2)【解析】

(1)先求出飞机在150秒内飞行的距离,然后由正弦定理可得;(2)飞机,山顶的海拔的差为,则山顶的海拔高度为.【详解】解:(1)飞机在150秒内飞行的距离为,在中,由正弦定理,有,∴;(2)飞机,山顶的海拔的差为,,即山顶的海拔高度为.【点睛】本题主要考查正弦定理的应用,考查了计算能力,属于中档题.19、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).20、(Ⅰ)p=1;(Ⅱ)存在实数,使得{an}为等比数列【解析】

(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差数列列式求p的值;(Ⅱ)假设存在p,使得{an}为等比数列,可得,求解p值,验证得答案.【详解】(Ⅰ)由a1=1,,得,,则,,,.由,,a4成等差数列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假设存在p,使得{an}为等比数列,则,即,则1p=p+1,即p=1.此时,,∴,而,又,所以,而,且,∴存在实数,使得{an}为以1为首项,以1为公比的等比数列.【点睛】本题考查数列递推式,考查等差数列与等比数列的性质,是中档题.21、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】

(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论