版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.2.下列结论:①;②;③,;④,,其中正确结论的个数是().A.1 B.2 C.3 D.43.直线与圆相交于点,则()A. B. C. D.4.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.5.把十进制数化为二进制数为A. B.C. D.6.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2407.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.8.若||=2cos15°,||=4sin15°,的夹角为30°,则等于()A. B. C.2 D.9.已知向量,则与的夹角为()A. B. C. D.10.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为____________.12.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.13.已知等比数列中,若,,则_____.14.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.15.已知,,若,则实数________.16.已知都是锐角,,则=_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.20.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.21.已知(1)化简;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.2、A【解析】
根据不等式性质,结合特殊值法即可判断各选项.【详解】对于①,若,满足,但不成立,所以A错误;对于②,若,满足,但不成立,所以B错误;对于③,,而,由不等式性质可得,所以③正确;对于④,若满足,但不成立,所以④错误;综上可知,正确的为③,有1个正确;故选:A.【点睛】本题考查了不等式性质应用,根据不等式关系比较大小,属于基础题.3、D【解析】
利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.4、B【解析】
求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.5、C【解析】选C.6、B【解析】
根据分层抽样的性质,直接列式求解即可.【详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【点睛】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.7、B【解析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.8、B【解析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为,所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.9、D【解析】
先求出的模长,然后由可求出答案.【详解】由题意,,,所以与的夹角为.故选D.【点睛】本题考查了两个向量的夹角的求法,考查了向量的模长的计算,属于基础题.10、B【解析】
根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.12、【解析】
根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.13、4【解析】
根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.14、【解析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.15、2或【解析】
根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.16、【解析】
由已知求出,再由两角差的正弦公式计算.【详解】∵都是锐角,∴,又,∴,,∴.故答案为.【点睛】本题考查两角和与差的正弦公式.考查同角间的三角函数关系.解题关键是角的变换,即.这在三角函数恒等变换中很重要,即解题时要观察“已知角”和“未知角”的关系,根据这个关系选用相应的公式计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-3;(2)证明见解析.【解析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18、(1),(2)80人,13.25千步,(3)星期二【解析】
(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.【详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则(2)由图可知,解得所以该天运动步数不少于15000的人数为(人)全体职工在该天的平均步数为:(千步)(3)因为假设甲的步数为千步,乙的步数为千步由频率分布直方图可得:,解得,解得所以可得出的是星期二的频率分布直方图.【点睛】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单.19、(1),,;(2)证明见详解,,.【解析】
(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.20、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【点睛】本题主要考查了含参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京林业大学《森林生态学A》2021-2022学年第一学期期末试卷
- 2024工程尾款结算具体协议样本版B版
- 光伏电站项目融资合作协议(二零二四年)2篇
- ewb仿真课程设计
- 2024专业彩钢建筑安装协议模板
- 2024年度公司办公区内墙刮瓷装修工程协议版
- 2024年度研发合作协议:新产品开发与技术共享合同2篇
- 关于民族的课程设计
- 2024年度国际旅游合作协议5篇
- 广告车车厢广告位租赁合同(二零二四年)3篇
- 0-6岁儿童心理行为发育初筛记录表
- 2023年仲恺农业工程学院911食品工艺学考研复习题库(含答案)
- JJF 1630-2017分布式光纤温度计校准规范
- GB/T 36964-2018软件工程软件开发成本度量规范
- 三年级上册美术《美丽的花挂毯》课件
- 记承天寺夜游(优秀课件)
- 老人去世生平简历范文(通用十八篇)
- 冲压模具设计课程设计
- 理性追星主题班会课件
- 大班科学:天气预报课件
- 无人机结构与系统教学大纲
评论
0/150
提交评论