版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,如果,那么cosC等于()A. B. C. D.2.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.3.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.44.角的终边经过点,那么的值为()A. B. C. D.5.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则6.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两个事件是()A.恰有1个黑球与恰有2个黑球 B.至少有一个红球与都是黑球C.至少有一个黑球与至少有1个红球 D.至少有一个黑球与都是黑球7.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件8.已知向量,的夹角为,且,,则与的夹角等于A. B. C. D.9.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形10.已知为的一个内角,向量.若,则角()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________12.函数,函数,若对所有的总存在,使得成立,则实数的取值范围是__________.13.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.14.设,则等于________.15.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)16.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.18.已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.19.设向量.(1)当时,求的值;(2)若,且,求的值.20.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.21.已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D2、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.3、D【解析】
先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】,故选C。5、D【解析】
试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.6、A【解析】
从装有2个红球和2个黑球的口袋中任取2个球,包括3种情况:①恰有一个黑球,②恰有两个黑球,③没有黑球.
故恰有一个黑球与恰有两个黑球不可能同时发生,它们是互斥事件,再由这两件事的和不是必然事件,故他们是互斥但不对立的事件,
故选:A.7、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.8、C【解析】
根据条件即可求出,从而可求出,,,然后可设与的夹角为,从而可求出,根据向量夹角的范围即可求出夹角.【详解】,;,,;设与的夹角为,则;又,,故选.【点睛】本题主要考查向量数量积的定义运用,向量的模的求法,以及利用数量积求向量夹角.9、B【解析】
利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.10、C【解析】
带入计算即可.【详解】即,选C.【点睛】本题考查向量向量垂直的坐标运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】四棱锥的侧面积是12、【解析】
分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.【详解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),当x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]⊆[1,2],故有3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].故答案为.【点睛】本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解“对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立”的含义,转化为f(x)的值域是g(x)的子集.13、②【解析】
对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【点睛】本题考查三角函数的基本性质,属于基础题14、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.15、【解析】
观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题16、【解析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2).【解析】
(1)根据数列通项公式的特征,我们对,两边同时除以,得到,利用等差数列的定义,就可以证明出数列是等差数列;(2)求出数列的通项公式,利用裂项相消法,求出数列的前n项和.【详解】(1)的两边同除以,得,又,所以数列是首项为4,公差为2的等差数列.(2)由(1)得,即,故,所以【点睛】本题考查了证明等差数列的方法以及用裂项相消法求数列前和.已知,都是等差数列,那么数列的前和就可以用裂项相消法来求解.18、(1)(2)时,取最小值;时,取最大值1.【解析】
试题分析:(1)根据向量数量积、二倍角公式及配角公式得,再根据正弦函数性质得.(2)先根据得,,再根据正弦函数性质得最大值和最小值.试题解析:(1),最小正周期为.(2)当时,,由图象可知时单调递增,时单调递减,所以当,即时,取最小值;当,即时,取最大值1.19、(1);(2).【解析】
(1)直接由向量的模长公式进行计算.
(2)由向量平行的公式可得,再用余弦的二倍角和正弦的和角公式,然后再转化为的式子,代值即可.【详解】(1)因为,所以,所以.(2)由得,所以,故.【点睛】本题考查向量求模长和向量的平行的坐标公式的利用,以及三角函数的化简求值,属于基础题.20、证明见解析【解析】
证明:平面,平面,且,平面,平面ABD,平面平面,
.21、(1)应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)P【解析】
(1)由分层抽样的性质可得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,可得抽取7名同学,应分别从甲、乙、丙三个年级分别抽取3人,2人,2人;(2)从抽出的7名同学中随机抽取2名的所有可能结果为21种,其中2名同学来自同一年级的所有可能结果为5种,可得答案.【详解】解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2因为采取分层抽样的方法抽取7名同学,所以应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)从抽出的7名同学中随机抽取2名的所有可能结果为:ABACADAEAFAGBCBD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政总厨个人述职报告
- 糖尿病护理方案
- 3.3.1盐类的水解酸碱性高二上学期化学人教版(2019)选择性必修1
- 足跟痛的诊断与治疗
- 保护牙齿小班安全教案反思
- 荷塘月色说课稿
- 安踏企业五年战略规划
- 生物物理学实验室安全操作
- 机场租赁合同
- 健身中心土地租赁协议
- 肯布兰佳领导力发展战略课程
- 26个标点符号大全
- GB/T 9115.1-2000平面、突面对焊钢制管法兰
- GB/T 7322-2017耐火材料耐火度试验方法
- GB/T 30790.2-2014色漆和清漆防护涂料体系对钢结构的防腐蚀保护第2部分:环境分类
- GB/T 19811-2005在定义堆肥化中试条件下塑料材料崩解程度的测定
- 第5课 文化变革 美术发展 课件 【高效课堂+备课精研】 高一美术鲁美版美术鉴赏
- pep 三年级英语课本人物介绍PPT课
- 2023年北京清华附中小升初考试数学真题及答案
- 希沃优化大师操作培训
- 氧气吸入法(课堂)课件
评论
0/150
提交评论