版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则不等式的解集是()A. B. C. D.2.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或93.已知则的最小值是()A. B.4 C. D.54.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.5.已知圆O1:x2+y2=1与圆O2:(x﹣3)2+(x+4)2=16,则圆O1与圆O2的位置关系为()A.外切 B.内切 C.相交 D.相离6.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.77.在中,角所对应的边分别为,且满足,则的形状为()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等边三角形8.在中,点满足,则()A. B.C. D.9.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.设,向量,,若,则__________.12.在中,角的对边分别为.若,则的值为__________.13.设等比数列的前项和为,若,,则的值为______.14.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.15.已知的内角、、的对边分别为、、,若,,且的面积是,___________.16.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.x(万元)357911y(万元)810131722(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?相关公式:,.18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)19.如图,已知函数,点分别是的图像与轴、轴的交点,分别是的图像上横坐标为的两点,轴,共线.(1)求的值;(2)若关于的方程在区间上恰有唯一实根,求实数的取值范围.20.已知数列的前项和为,且2,,成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和;21.已知.(Ⅰ)化简;(Ⅱ)已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
分别考虑即时;即时,原不等式的解集,最后求出并集。【详解】当即时,,则等价于,即,解得:,当即时,,则等价于,即,所以,综述所述,原不等式的解集为故答案选A【点睛】本题考查分段函数的应用,一元二次不等式的解集,属于基础题。2、C【解析】
利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。3、C【解析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.4、A【解析】
先计算出,然后利用基本不等式可得出的值.【详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【点睛】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.5、A【解析】
先求出两个圆的圆心和半径,再根据它们的圆心距等于半径之和,可得两圆相外切.【详解】圆的圆心为,半径等于1,圆的圆心为,半径等于4,它们的圆心距等于,等于半径之和,两个圆相外切.故选A.【点睛】判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.6、A【解析】由题意,焦点坐标,所以,解得,故选A。7、A【解析】
由正弦定理进行边化角,再由二倍角公式可得,则或,所以或,即可判断三角形的形状.【详解】由正弦定理得,则,因此在中,或,即或.故选:A【点睛】本题考查利用正弦定理进行边角互化,判断三角形形状,属于基础题.8、D【解析】
因为,所以,即;故选D.9、D【解析】
由题意找到反例即可确定错误的选项.【详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【点睛】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.10、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】从题设可得,即,应填答案.12、1009【解析】
利用余弦定理化简所给等式,再利用正弦定理将边化的关系为角的关系,变形化简即可得出目标比值.【详解】由得,即,所以,故.【点睛】本题综合考查正余弦定理解三角形,属于中档题.13、16【解析】
利用及可计算,从而可计算的值.【详解】因为,故,因为,故,故,故填16.【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.14、或【解析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.15、【解析】
利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.16、(-∞,1)【解析】
由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)12万元的毛利率更大【解析】
(1)根据题意代入数值分别算出与即可得解;(2)分别把与代入线性回归方程算出再算出毛利率即可得解.【详解】(1)由题意,.,,,故y关于x的线性回归方程为.(2)当时,,对应的毛利率为,当时,,对应的毛利率为,故投入成本12万元的毛利率更大.【点睛】本题考查了线性回归方程的求解和应用,考查了计算能力,属于基础题.18、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解析】
(1)根据所给数据和公式计算回归方程的系数,注意回归直线过中心点,得回归方程;(2)根据回归系数的正负可得正相关还是负相关,令代入可得估计值.【详解】(1),,,,,,故线性回归方程为.(2)因为,故可以判断,该高三学生的记忆力x和判断力是正相关;由回归直线方程预测,判断力为4的同学的记忆力约为9.【点睛】本题考查求线性回归直线方程,考查变量的相关性及回归方程的应用.回归方程中的系数的正负说明两数据的正负相关,系数为正,则为正相关,系数为负,则为负相关.19、(Ⅰ),(Ⅱ)或【解析】试题分析:解:(Ⅰ)建立,.(Ⅱ),结合图象可知或.试题解析:解:(Ⅰ)①②解得,.(Ⅱ),,因为时,,由方程恰有唯一实根,结合图象可知或.20、(1);(2)【解析】
(1)利用求解;(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论