版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则()A. B. C. D.2.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A. B. C.5 D.63.如图所示的程序框图,若执行的运算是,则在空白的执行框中,应该填入A.B.C.D.4.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为()A.3 B.5 C.2 D.15.在等比数列中,,,则等于()A.256 B.-256 C.128 D.-1286.如图所示,在中,点D是边的中点,则向量()A. B.C. D.7.已知在中,,那么的值为()A. B. C. D.8.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.2009.已知各项均为正数的等比数列,若,则的值为()A.-4 B.4 C. D.010.如果a<b<0,那么下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不共线的三个平面向量,,两两所成的角相等,且,,则__________.12.已知角α的终边与单位圆交于点.则___________.13.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.14.___________.15.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.16.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北的方向上,仰角为,行驶4km后到达B处,测得此山顶在西偏北的方向上.(1)求此山的高度(单位:km);(2)设汽车行驶过程中仰望山顶D的最大仰角为,求.18.(1)若关于x的不等式2x>m(x2+6)的解集为{x|x<﹣3或x>﹣2},求不等式5mx2+x+3>0的解集.(2)若2kx<x2+4对于一切的x>0恒成立,求k的取值范围.19.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.20.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?21.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用诱导公式得到的值,再由同角三角函数的平方关系,结合角的范围,即可得答案.【详解】∵,又,∴.故选:B.【点睛】本题考查诱导公式、同角三角函数的平方关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意符号问题.2、C【解析】
由已知可得,则,所以的最小值,应选答案C.3、D【解析】试题分析:解:运行第一次:,不成立;运行第二次:,不成立;运行第三次:,不成立;运行第四次:,不成立;运行第四次:,成立;输出所以应选D.考点:循环结构.4、A【解析】
先由题意确定抽样比,进而可求出结果.【详解】由题意该单位共有职工人,用分层抽样的方法从中抽取10人进行体检,抽样比为,所以应抽查的老年人的人数为.故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型.5、A【解析】
先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此.故选A【点睛】本题主要考查等比数列的基本量的计算,熟记通项公式即可,属于基础题型.6、D【解析】
根据向量线性运算法则可求得结果.【详解】为中点本题正确选项:【点睛】本题考查根据向量线性运算,用基底表示向量的问题,属于常考题型.7、A【解析】
,不妨设,,则,选A.8、B【解析】
根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。9、B【解析】
根据等比中项可得,再根据,即可求出结果.【详解】由等比中项可知,,又,所以.故选:B.【点睛】本题主要考查了等比中项的性质,属于基础题.10、D【解析】对于选项A,因为,所以,所以即,所以选项A错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,故选项C错误;对于选项D,,所以,又,所以,所以,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
故答案为:4【点睛】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.12、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.13、1【解析】
由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.14、【解析】
先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.15、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。16、4【解析】
由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)km.(2)【解析】
(1)设此山高,再根据三角形中三角函数的关系以及正弦定理求解即可.(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,再计算到直线的距离即可.【详解】解:(1)设此山高,则,在中,,,.根据正弦定理得,即,解得(km).(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,所以过C作,垂足为E,连接DE.则,,,所以.【点睛】本题主要考查了解三角形在实际中的运用,需要根据题意找到对应的直角三角形中的关系,或利用正弦定理求解.属于中档题.18、(1);(2)【解析】
(1)原不等式等价于根据不等式的解集由根与系数的关系可得关于的方程,解出的值,进而求得的解集;(2)由对于一切的恒成立,可得,求出的最小值即可得到的取值范围.【详解】(1)原不等式等价于,所以的解集为则,,所以等价于,即,所以,所以不等式的解集为(2)因为,由,得,当且仅当时取等号.【点睛】本题主要考查了一元二次不等式的解法,不等式恒成立问题和基本不等式,考查了方程思想和转化思想,属基础题.19、(1),;(2).【解析】
(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【点睛】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.20、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适.【解析】
(1)根据中位数和平均数的定义计算即可;(2)根据平均数和平均数的优缺点进行选择即可.【详解】(1)将数据从小到大排列得:111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.所以中位数为:,平均数为:;(2)用平均数描述这个数据更合适,理由如下:平均数反映的是总体的一个情况,中位数只是数列从小到大排列得到的最中间的一个数或两个数,所以平均数更能反映总体的一个整体情况.【点睛】本题考查数据的数字特征的计算及应用,考查基础知识和基本技能,属于常考题.21、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2时,f(n)递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级20以内连加连减口算练习题75道一张
- 小学数学一年级以内加减法口算
- 自然辩证法复习题含答案完整版
- 内蒙古阿拉善银星风力发电有限公司事故应急预案
- 职称述职报告
- 高考新课标语文模拟试卷系列之72
- 《教育工作者的境界》课件
- 技能竞赛与课外拓展活动计划
- 宠物用品行业安全工作总结
- 旅游行业的保安工作总结
- 窗帘采购投标方案(技术方案)
- 电力安全工作规程考试试题(答案)
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 城市燃气管网改造合同
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 《水电站建筑物》课件
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
- 智力残疾送教上门教案
- 2024北京市公安局平谷分局勤务辅警人员招聘笔试参考题库含答案解析
- 单位信息化建设IT建设项目后评估报告(模板)
评论
0/150
提交评论