2022-2023学年福建省泉州市第十六中学高一数学第一学期期末统考模拟试题含解析_第1页
2022-2023学年福建省泉州市第十六中学高一数学第一学期期末统考模拟试题含解析_第2页
2022-2023学年福建省泉州市第十六中学高一数学第一学期期末统考模拟试题含解析_第3页
2022-2023学年福建省泉州市第十六中学高一数学第一学期期末统考模拟试题含解析_第4页
2022-2023学年福建省泉州市第十六中学高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.2.若,,,则有A. B.C. D.3.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知函数,则函数的最小正周期为A. B.C. D.5.是上的奇函数,满足,当时,,则()A. B.C. D.6.已知集合,,则集合A. B.C. D.7.若,则()A.2 B.1C.0 D.8.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6009.设正实数满足,则的最大值为()A. B.C. D.10.若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程的一个近似根(精确度)可以是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,12.已知函数,,那么函数图象与函数的图象的交点共有__________个13.已知幂函数的图像过点,则的解析式为=__________14.已知幂函数在区间上单调递减,则___________.15.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间17.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值18.已知幂函数在上为增函数.(1)求实数的值;(2)求函数的值域.19.已知函数.(1)存在,使得不等式成立,求实数k的取值范围;(2)方程有负实数解,求实数k的取值范围.20.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围21.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D2、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.3、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.4、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得5、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.6、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.7、C【解析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C8、A【解析】频数为考点:频率频数的关系9、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.10、C【解析】根据二分法求零点的步骤以及精确度可求得结果.【详解】因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,,所以函数在内有零点,因为,所以满足精确度,所以方程的一个近似根(精确度)是区间内的任意一个值(包括端点值),根据四个选项可知选C.故选:C【点睛】关键点点睛:掌握二分法求零点的步骤以及精确度的概念是解题关键.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;12、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.13、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:14、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:15、【解析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为17、【解析】由题意利用任意角的三角函数的定义,求得sinα、cosα、tanα的值【详解】解:角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,∴x=1,y=-2,r=|OA|=3,∴sinα==-、cosα==、tanα==-2【点睛】本题主要考查任意角的三角函数的定义,属于基础题18、(1);(2).【解析】(1)解方程再检验即得解;(2)令,再求函数的值域即得解.【小问1详解】解:由题得或.当时,在上为增函数,符合题意;当时,在上为减函数,不符合题意.综上所述.【小问2详解】解:由题得,令,抛物线的对称轴为,所以.所以函数的值域为.19、(1)(2)【解析】(1)令,然后分离参数,求出函数的最大值即可得答案;(2)由题意,令,则,原问题等价于:在上有解,即在上有解,利用一元二次方程根的分布即可求解.【小问1详解】解:由题意,令,则原不等式等价于:存在,使成立,即存在,使成立,由二次函数的性质知,当,即时,取得最大值1,所以【小问2详解】解:由题意,因为方程有负实数根,则令,有,原问题等价于:在上有解,即在上有解令,,则或或或或,解得或或或或,即实数k的取值范围为.20、(1);(2).【解析】(1)采用换元,令,当时,把函数转化为二次函数,即可求出答案.(2)采用换元,令,即在恒成立,即可求出答案.【小问1详解】函数,令,当时,,的值域为.【小问2详解】,恒成立,只需:在恒成立;令:则得.21、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论