版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市铁路职业中学2021年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.由曲线,以及所围成的图形的面积等于A.2
B.
C.
D.参考答案:D略2.已知抛物线的焦点为F,点是抛物线C上一点,圆M与线段MF相交于点A,且被直线截得的弦长为,若,则p=(
)A.3 B.2 C. D.1参考答案:B【分析】根据所给条件画出示意图,用表示出、的长度,根据比值关系即可求得p的值。【详解】根据题意,画出示意图如下图所示:根据抛物线定义可知因为直线截圆得到的弦长为所以即所以因为所以即,解得因为在抛物线上,所以,解得所以选B【点睛】本题考查了抛物线的定义与应用,注意应用几何关系找各线段的比值,属于中档题。
3.命题“?x∈R,x3﹣3x>0”的否定为()A.?x∈R,x3﹣3x≤0 B.?x∈R,x3﹣3x<0 C.?x∈R,x3﹣3x≤0 D.?x∈R,x3﹣3x>0参考答案:C【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行求解即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即?x∈R,x3﹣3x≤0,故选:C4.已知i为虚数单位,则=()A. B. C. D.参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:===.故选:D.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.5.不等式|2x+5|≥7成立的一个必要而不充分条件是()A.x≠0 B.x≤﹣6 C.x≤﹣6或x≥1 D.x≥1参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】由不等式|2x+5|≥7,化为2x+5≥7,或2x+5≤﹣7,解出即可判断出结论.【解答】解:由不等式|2x+5|≥7,化为2x+5≥7,或2x+5≤﹣7,解得x≥1,或x≤﹣6.∴不等式|2x+5|≥7成立的一个必要而不充分条件是x≠0,故选:A.6.已知函数f(x)=x3﹣3x2﹣m存在2个零点,则这两个零点的和为()A.1 B.3 C.1或4 D.1或3参考答案:D【考点】52:函数零点的判定定理.【分析】求出导函数,得出函数的极值点,根据题意得出f(2)=0或f(0)=0,求出零点即可.【解答】解:f(x)=x3﹣3x2﹣m,∴f′(x)=3x2﹣6x=0有两不等根,∴x=0,x=2,∴f(2)=0或f(0)=0,∴零点分别为0,3或2,﹣1,∴这两个零点的和为3或1.故先:D.7.方程所表示的曲线是
(
)A.双曲线
B.椭圆
C.双曲线的一部分
D.椭圆的一部分参考答案:C8.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2﹣b2=ac,则角B的值为()A. B. C.或 D.或参考答案:A考点;余弦定理的应用.专题;计算题.分析;通过余弦定理求出cosB的值,进而求出B.解答;解:∵,∴根据余弦定理得cosB=,即,∴,又在△中所以B为.故选A.点评;本题考查了余弦定理的应用.注意结果取舍问题,在平时的练习过程中一定要注意此点.9.以下说法,正确的个数为
(
)①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质这是运用的类比推理.④个位是5的整数是5的倍数,2375的个位是5,因此2375是5的倍数,这是运用的演绎推理.A.0
B.2
C.3
D.4参考答案:C10.“因为指数函数y=ax是增函数(大前提),而y=()x是指数函数(小前提),所以y=()x是增函数(结论)”,上面推理的错误是()A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错参考答案:A【考点】F6:演绎推理的基本方法.【分析】对于指数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,指数函数是一个减函数y=ax是增函数这个大前提是错误的,得到结论【解答】解:∵当a>1时,函数是一个增函数,当0<a<1时,指数函数是一个减函数∴y=ax是增函数这个大前提是错误的,从而导致结论错.故选A.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,若存在2个零点,则a的取值范围是____参考答案:【分析】把的零点问题归结为与函数有两个不同交点的问题,通过移动动直线得实数的取值范围.【详解】有两个不同的零点等价于有两个不同的解,即有两个不同的解,所以的图像与有两个不同的交点.画出函数的图像,当即时,两图像有两个不同的交点,故答案为.【点睛】含参数的函数的零点个数问题,可以利用函数的单调性和零点存在定理来判断,如果该函数比较复杂,那么我们可以把该零点个数问题转化为两个熟悉函数图像的交点问题,其中一个函数的图像为动直线,另一个函数不含参数,其图像是确定的.12.已知直线l、m,平面α、β且l⊥α,mβ给出下列四个命题,其中正确的是①若α∥β则l⊥m
②若α⊥β则l∥m
③若l⊥m则α∥β④若l∥m则α⊥β参考答案:①④13.在等比数列{an}中,,,则
.参考答案:-6在等比数列{an}中,a2a4++a4a6=36,2a3a5∴(a3)2+2a3a5+(a5)2=36,即(a3+a5)2=36,∵a7<0,∴a3=a1q2<0,a5=a1q4<0,即a3+a5<0,则a3+a5=﹣6,故答案为:﹣6
14.利用计算机产生0~1之间的均匀随机数x,则事件“7x﹣3≥0”发生的概率为.参考答案:【考点】几何概型.【专题】转化思想;转化法;简易逻辑.【分析】求满足事件“7x﹣3<0”发生的x的范围,利用数集的长度比求概率.【解答】解:由7x﹣3≥0,解得:x≥,故满足条件的概率p==,故答案为:.【点评】本题考查了几何概型的概率计算,利用数集的长度比可求随机事件发生的概率.15.有下列五个命题:①“若,则互为相反数”的逆命题.②在平面内,F1、F2是定点,,动点M满足,则点M的轨迹是双曲线.③“在中,“”是“三个角成等差数列”的充要条件.④“若,则方程是椭圆”.⑤已知向量是空间的一个基底,则向量也是空间的一个基底.⑥椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为5.其中真命题的序号是
.参考答案:①③⑤⑥.16.设是抛物线上两点,且满足OA⊥OB,则等于________.参考答案:略17.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等于
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)参考答案:19.(本题满分10分)如图,直线过点P(0,1),夹在两已知直线和之间的线段AB恰被点P平分.(Ⅰ)求直线的方程;(Ⅱ)设点D(0,m),且AD//,求:ABD的面积.参考答案:20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲:8282799587
乙:9575809085(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.参考答案:(1)作出茎叶图如下:
…4分(2)派甲参赛比较合适,理由如下:(70×1+80×3+90×1+9+2+2+7+5)=85.(70×1+80×2+90×2+5+0+5+0+5)=85.[[(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2]=31.6.[(75-85)2+(80-85)2+(85-85)2+(90-85)2+(95-85)2]=50.∴甲的成绩较稳定,派甲参赛比较合适.…………12分.21.(本小题满分12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)求与平面所成的角大小。参考答案:(1)如图,因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M与C1D1所成的角.因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°,而A1B1=1,B1M==,故tan∠MA1B1==.即异面直线A1M和C1D1所成的角的正切值为.(2)由A1B1⊥平面BCC1B1,BM?平面平面BCC1B1,得A1B1⊥BM①
由(1)知,B1M=,又BM==,B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M②又A1B1∩B1M=B1,∴BM⊥平面A1B1M,∴BM与面A1B1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年布展装修项目筹资方案
- 2023年可调控辊型四辊液压轧机项目筹资方案
- 养老院老人康复设施维修人员考核奖惩制度
- 《板前明线布线图》课件
- 2024年版物业管理委托服务详细合同版B版
- 挂名分公司负责人的协议书(2篇)
- 《毒蛇咬伤防治》课件
- 2025年莆田货运从业资格证模拟考试题库下载
- 2025年六盘水货运从业资格证模拟考试题下载
- 2025年咸宁货运上岗证模拟考试试题
- 渠道衬砌施工方案(渠道预制混凝土块)
- 2024年高考语文新课标I卷作文“答案与问题”讲评
- 篮球球星姚明课件
- 2024年工商联副会长述职报告
- 02S515排水检查井图集
- 2024-2030年中国Janus激酶(JAK)抑制剂行业市场发展趋势与前景展望战略分析报告
- 2025高考语文步步高大一轮复习讲义教材文言文点线面答案精析
- 《工程勘察设计收费标准》(2002年修订本)-工程设计收费标准2002修订版
- 2024山东能源集团中级人才库选拔(高频重点提升专题训练)共500题附带答案详解
- T-CCIIA 0004-2024 精细化工产品分类
- 低年级革命文化类课文教学探析
评论
0/150
提交评论