湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析_第1页
湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析_第2页
湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析_第3页
湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析_第4页
湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市红旗路中学2022-2023学年高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,,若函数有四个零点,则的取值范围(

). A. B. C. D.参考答案:D图象如图,当时,符合要求,故选.2.已知点,,则直线的斜率是A. B. C.

D.参考答案:B3.已知角α是第二象限角,且,则cosα=()A.﹣ B.﹣ C. D.参考答案:A【考点】同角三角函数基本关系的运用.【分析】由角的范围和同角三角函数基本关系可得cosα=﹣,代值计算可得.【解答】解:∵角α是第二象限角,且,∴cosα=﹣=﹣,故选:A4.三视图如图所示的几何体的全面积是()参考答案:A5.(5分)如图曲线对应的函数是() A. y=|sinx| B. y=sin|x| C. y=﹣sin|x| D. y=﹣|sinx|参考答案:C考点: 函数的图象与图象变化.专题: 数形结合.分析: 应用排除法解决本题,先从图象的右侧观察知它与正弦曲线一样,可排除一些选项,再从左侧观察又可排除一些,从而可选出答案.解答: 观察图象知:在y轴的右侧,它的图象与函数y=﹣sinx相同,排除A、B;又在y轴的左侧,它的图象与函数y=sinx相同,排除D;故选C.点评: 本题主要考查了三角函数函数的图象与图象变化,同学们对于常用的正弦函数的图象要切实掌握.6.点是直线上的动点,则代数式有(

)A.最小值6

B.最小值8

C.最大值6

D.最大值8参考答案:A7.设集合,a=5,则有(

)A、

B、

C、

D、参考答案:A8.如果等差数列中,,那么(

)A.

14

B.21

C.28

D.35参考答案:C略9.在中,,则的大小为(

A.

B.

C.

D.

参考答案:解析:由平方相加得

选A10.直线与直线的位置关系为(

)A.相交但不垂直;

B.平行;

C.垂直;

D.不确定。参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.(5分)下列命题中,正确的是

(1)若与是共线向量,与是共线向量,则与是共线向量;(2)已知=(sinθ,,=(1,),其中),则;(3)函数f(x)=tan与函数f(x)=是同一函数;(4)tan70°?cos10?(1﹣tan20°)=1.参考答案:(2)、(4)考点: 命题的真假判断与应用.专题: 简易逻辑.分析: (1)当=时,则与不一定是共线向量;(2)由),可得sinθ<0.利用数量积和平方关系=0,可得;(3)利用倍角公式可得:函数f(x)==,其中x≠kπ,k∈Z.对于函数f(x)=tan,再求出其定义域,比较即可得出.(4)利用商数关系、两角和差的正弦余弦公式、倍角公式、诱导公式即可得出.解答: (1)当=时,则与不一定是共线向量;(2)∵),∴sinθ<0.==sinθ+|sinθ|=sinθ﹣sinθ=0,∴,因此正确;(3)函数f(x)===,其中x≠kπ,k∈Z.对于函数f(x)=tan,其中(k∈Z),即x≠2kπ+π.其定义域不同,因此不是同一函数;(4)∵===.tan70°?cos10?(1﹣tan20°)===1,故正确.综上可知:只有(2)(4)正确.故答案为:(2)(4).点评: 本题综合考查了向量的共线定理、数量积运算与垂直的关系、商数关系、两角和差的正弦余弦公式、倍角公式、诱导公式等基础知识与基本技能方法,属于中档题.12.若xlog34=1,则4x+4﹣x的值为.参考答案:【考点】对数的运算性质.【分析】由已知,若xlog34=1,解方程易得x的值,代入即可求出4x+4﹣x的值.【解答】解:∵xlog34=1∴x=log43则4x+4﹣x==3+=故答案为:13.已知函数满足f(c2)=.则f(x)的值域为

.参考答案:(1,]【考点】函数的值域;分段函数的应用.【专题】函数思想;综合法;函数的性质及应用.【分析】由f(x)的定义域便可看出0<c<1,从而可判断0<c2<c,从而可求出,这样便可求出c=,然后根据一次函数、指数函数的单调性及单调性定义即可求出每段上f(x)的范围,然后求并集便可得出f(x)的值域.【解答】解:根据f(x)解析式看出0<c<1;∴0<c2<c;∴;∴;∴;①0时,f(x)=为增函数;∴;即;②时,f(x)=2﹣4x+1为减函数;∴;即;∴综上得f(x)的值域为.故答案为:.【点评】考查分段函数的概念,知道0<c<1时,c2<c,以及一次函数、指数函数的单调性,单调性的定义,函数值域的概念,分段函数值域的求法.14.函数的单调递减区间是________________________.参考答案:15.已知f(x)=,则f[f(-2)]=________________参考答案:16.△ABC的内角A,B,C所对的边分別カa,b,c,则下列命题正确的是______.①若,则②若,则③若,则是锐角三角形④若,则参考答案:①②③【分析】由,利用正弦定理可知,由余弦定理,结合基本不等式整理可得,从而可判断①;由余弦定理,结合基本不等式可得,从而可判断②;由先证明,从而可判断③;取可判断④.【详解】①由,利用正弦定理可知:,由余弦定理可得,整理可得:,,①正确;②,从而,从而,②正确;③,,即,则,最大角为锐角,即是锐角三角形,③正确;④取满足,此时,,④不正确,故答案为①②③.【点睛】本题通过对多个命题真假的判断,综合考查正弦定理、余弦定理以及基本不等式的应用,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.17.幂函数,当时为减函数,则实数的值是_____.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.△ABC的内角A,B,C所对的边分别为a,b,c,且满足.(1)求A;(2)若,,求△ABC的面积.参考答案:(1)(2)【分析】(1)根据正弦定理将条件化为角的关系,即得结果,(2)先根据余弦定理得再根据面积公式得结果.【详解】(1)因为所以因为(2)因为所以.【点睛】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题.19.已知函数f(x)=每输入一个x值,都得到相应的函数值,画出程序框图并写出程序.参考答案:见解析【分析】由条件可得函数为分段函数,这样就要进行判断,然后进行求解【详解】用变量分别表示自变量和函数值,步骤如下:第一步,输入的值第二步,判断的范围,若,则用解析式求函数值;否则,用求函数值第三步,输出的值程序框图和程序如下.【点睛】本题考查的知识点是设计程序解决问题,由已知条件不难发现函数为分段函数,故需要进行对输入值的判定,然后再代入求解。20.某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.参考答案:【考点】函数模型的选择与应用.【分析】(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.【解答】解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A,B,C三种部件的人数分别为44,88,68.21.(本小题满分8分)已知.(1)求的值;(2)求的值;参考答案:解:(1).......................................2分.......................................3分.......................................4分(2)......................................5分......................................6分..........................

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论