版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于SVM的信息融合新方法
摘要:利用SVM对大规模数据进行训练时,需要占用很大的内存空间,甚至会因内存不够而无法训练。为此,提出了将大规模数据分块求解,然后将分块求解的结果进行信息融合的新方法。首先训练得到各模块的支持向量,将所有支持向量进行融合,得到决策模型和一组支持向量。当有新的数据加入时,将其作为一个子模块,训练得到该模块的支持向量,与原模型中获得的支持向量进行融合,训练得到新的决策模型。利用KDDCUP99数据进行实验,结果表明该方法的测试精度与在所有数据集上训练的精度相当,花费时间少,适用于增量学习。
关键词:支持向量机;信息融合;增量学习
SVM[1,2]是最近发展起来的一种分类方法。它基于统计学习理论,根据结构风险最小化原则,在经验风险和模型的复杂度之间折中,有较强的泛化能力,且具有全局最优、与维数无关等特性。当数据线性不可分时,通过核函数,将数据映射到高维特征空间,使得数据线性可分。它本质上是一个凸二次规划问题,当训练规模很大时,求解此最优化问题要占用很大的内存空间,会因内存空间不够而导致无法训练。解决此类问题的有效方法是将大规模数据进行分块,然后将各模块的信息进行融合,从而得到最终结果。
信息融合又称数据融合,是利用计算机技术对获得的若干节点的观测信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。文献提出了用神经网络的方法来实现信息融合,在预测精度上获得较好的效果。SVM是继神经网络后,分类性能较好的一种技术。它在信息融合领域也逐渐得到应用,文献[5~7]提出了多种基于SVM的信息融合方法,用各模块训练得到的模型对测试集进行判别,然后融合各模型的判别结果。但这些方法不适合增量学习。当有新的数据源加入时,融合模块需重新执行。
决策输出融合方法和投票数融合方法用各模块训练得到的分类器对测试集进行判别,再根据判别结果进行融合,分类精度上不如后两种方法,所花费的时间也较多。而且这两种方法在增量学习中要对信息融合模块重新处理,不能有效利用已有的信息。
对支持向量直接融合的方法在精度、漏报率和误报率上均与在所有数据集上得到的结果相接近。说明在分类中起作用的只是其中占少数的支持向量,如表3所示。每个模块得到的支持向量是很少的,大约占%。所以信息融合模块的规模相对较小,花费时间少。本文提出的方法预测精度甚至超过了对所有支持向量融合的结果,与在所有数据集上得到的结果最接近。说明本文方法在增量式学习中是有效的,具有较好的泛化能力。
4结束语
随着网络和数据库技术的发展,对大规模数据处理的要求会越来越高。本文在研究了现有的基于SVM的信息融合方法的基础上,提出了一种新的基于SVM融合的模型。通过实验表明,这种方法在入侵检测问题中得到了较高的分类精度,与在所有数据或所有支持向量上预测得到的精度相当,而且与其他信息融合方法相比,能利用已经融合的信息,进行增量式学习。但如何使数据分解后仍保证它的全局最优及如何推广到分布式应用仍有待解决。
参考文献:
[1]VAPIKV.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
BURGESCJC.Atutorialonsupportvectormachinesforpatternrecognition[J].DataMiningandKnowledgeDiscovery,1998,2(2):121-167.
HALLDL,LLINASJ.Anintroductiontomultisensordatafusion[J].ProceedingsofIEEE,1997,85(1):6-23.
WANGMei,HOUYuanbin.Neuralnetworkmodelbasedonanti-errordatafusion[C]//Procofthe4thInternationalConferenceonMachineLearningandCybernetics.[]:IEEEPress,2005:18-21.
YANWeiwu,SHAOHuihe,WANGXiaofan.Paralleldecisionmodelsbasedonsupportvectormachinesandtheirapplicationtodistributedfaultdiagnosis[C]//ProcofAmericanControlConference.Denver:[],2003:1770-1775.
ZHAOShuhe.Remotesensingdatafusionusingsupportvectormachine[C]//Procof2004GeoscienceandRemoteSensing:[],2004:2575-2578.
HUZhonghui,CAIYunze,LIYuangui,etal.Datafusionforfaultdiagnosisusingmulticlasssupportvectormachines[J].JournalofZhejiangUniversityScience,2005,6A(10):1030-1039.
PLATTJC.Fasttrainingofsupportvectormachinesusingsequentialminimaloptimization[C]//ProcofAdvancesinKernelMethods:SupportVectorLearning.Cambridge:MITPress,1999:185-208.
HSUCW,LINCJ.Acomparisonofmethodsformulticlasssupportvectormachines[J].IEEETransactionsonNeuralNetworks,2002,46(13):415-425.
[10][DB/OL].[20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险解除合同申请书
- 2024年度大连版权许可使用合同跨境应用
- 二零二四年度影视作品版权销售合同
- 二零二四年度酒店保安兼职保洁服务合同
- 发光字技术研发2024年度合作合同
- 二零二四年度成都二手住宅交易合同解析
- 二零二四年文化艺术品交易与拍卖合同
- 商业拓展合同模板(2篇)
- 卡车赠送保养合同
- 国际酒店spa经理聘用合同模板(2篇)
- 《火灾应急措施培训》课件
- 职称申报诚信承诺书(个人)附件4
- 软件开发行业安全生产应急预案
- 仓库管理培训课件
- 【初中生物】病毒教学课件2024-2025学年人教版生物七年级上册
- 2024小学四年级上学期家长会课件
- 2024年秋新人教版7年级上册语文教学课件 第6单元 写作:发挥联想和想象
- 网络平台运营合同三篇
- 施工现场管理制度培训
- 第三单元《实际出真知 创新增才干》测试卷-高二思想政治课《哲学与人生》附答案
- 《篮球原地双手胸前传接球》教案 (三篇)
评论
0/150
提交评论