版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市石门县皂市镇中学2021-2022学年高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是所在平面上的一点,且是中点,则的值为(
)参考答案:答案:解析:为中点,2.如图,正方形的边长为6,点,分别在边,上,且,.若对于常数,在正方形的四条边上,有且只有6个不同的点P使得成立,那么的取值范围是
(A)
(B)
(C)
(D)参考答案:C考点:平面向量基本定理因为P在AB上,
;P在CD上,
;
P在AE或BF上,;
P在DE或CF上,
所以,综上可知当时,有且只有6个不同的点P使得成立。
故答案为:C3.十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,?=0.02,则输出的结果为()A.3 B.2.5 C.2.45 D.2.4495参考答案:C【考点】程序框图.【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的b,a,z的值,即可得出跳出循环时输出a的值.【解答】解:模拟程序的运行,可得a=2,?=0.02,执行循环体,b=2,a=,z=,不满足条件z≤?,执行循环体,b=,a=,z=,满足条件z≤?,退出循环,输出a的值为=2.45.故选:C.4.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为()A.12 B.15 C.25 D.50参考答案:D【考点】程序框图.【分析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=﹣1时,不满足条件i≥0,跳出循环,输出v的值为50.【解答】解:初始值n=4,x=2,程序运行过程如下表所示:v=1,i=3,v=1×2+3=5,i=2,v=5×2+2=12,i=1,v=12×2+1=25,i=0,v=25×2+0=50,i=﹣1,跳出循环,输出v的值为50.故选:D.5.等比数列中,则=(
)A.70
B.40
C.30
D.90参考答案:答案:B6.已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条渐近线,则的倾斜角所在的区间可能是(
)
A. B.
C. D.参考答案:D略7.已知=
A.
B.
C.
D.参考答案:D因为所以,所以。所以,选D.8.随机变量X~N(1,4),若p(x≥2)=0.2,则p(0≤x≤1)为()A.0.2 B.0.6 C.0.4 D.0.3参考答案:D【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性计算.【解答】解:P(X≤0)=P(X≥2)=0.2,∴,故选:D.9.已知集合,则A.
B.
C.
D.参考答案:【知识点】交集及其运算.A1【答案解析】D解析:依题意;化简集合,,利用集合的运算可得:.故选D.【思路点拨】求出集合A,B的等价条件,即可得到结论.10.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是(
)A.
B.
C.
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)为奇函数,且当时,,则______.参考答案:-2f(-1)=-f(1)=-2.12.曲线与直线所围成图形面积为_________.参考答案:略13.已知函数则f(x)≤2的解集为.参考答案:{x|﹣2<x≤1}【考点】5B:分段函数的应用.【分析】利用分段函数列出不等式分别求解即可.【解答】解:函数则f(x)≤2,可得:或,解得0≤x≤1或﹣2<x<0.则f(x)≤2的解集为:{x|﹣2<x≤1}.故答案为:{x|﹣2<x≤1}.14.若函数在是增函数,则的取值范围是
参考答案:略15.给出下列四个命题:①中,是成立的充要条件;②利用计算机产生0~1之间的均匀随机数,则事件“”发生的概率为;③已知是等差数列的前n项和,若,则;④若函数为R上的奇函数,则函数的图象一定关于点成中心对称.⑤函数有最大值为,有最小值为0。
其中所有正确命题的序号为
.
参考答案:①③16.设椭圆的两个焦点分别为,,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆离心率等于__________.参考答案:设到位于轴上方,坐标为,∵为等腰直角三角形,∴,即,即,∵,∴,,∴.17.某校共有学生2000名,各年级男、女学生人数如右表示,已知在全校学生中随机抽取1名,抽到高二级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取64人,则应在高三级中抽取的学生人数为
.
参考答案:16;依题意得,,故应在高三级中抽取的学生人数为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知p:-2≤1,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的充分而不必要条件,求实数m的取值范围.
参考答案:略19.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.参考答案:【考点】频率分布直方图;古典概型及其概率计算公式.【专题】计算题.【分析】(Ⅰ)根据频率分布直方图,用1减去成绩落在其它区间上的频率,即得成绩落在[70,80)上的频率.(Ⅱ)分别求出[60,70)分数段的人数,[70,80)分数段的人数.再利用古典概型求解.【解答】解:(Ⅰ)分数在[70,80)内的频率1﹣(0.005+0.01+0.015+0.015+0.025+0.005)×10=0.3,故成绩落在[70,80)上的频率是0.3,频率分布直方图如下图.
(Ⅱ)由题意,[60,70)分数段的人数为0.15×60=9人,[70,80)分数段的人数为0.3×60=18人;∵分层抽样在分数段为[60,80)的学生中抽取一个容量为6的样本,∴[60,70)分数段抽取2人,分别记为m,n;,[70,80)分数段抽取4人,分别记为a,b,c,d;设从中任取2人,求至多有1人在分数段[70,80)为事件A,则基本事件空间包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),…(c,d)共15种,则基本事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d0共9种,∴P(A)=【点评】本题主要考查频率分布直方图、用样本估计总体、等可能事件的概率,属于基础题.20.设
(1)若在上递增,求的取值范围;
(2)若在上的存在单调递减区间,求的取值范围参考答案:
…………2分(1)对任意的恒成立……4分
…………6分
……………8分(2)在上有解………………10分
…………12分
……14分21.在平面直角坐标系xOy中,设点集,令.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).参考答案:(1)见解析;(2)见解析.【分析】(1)由题意首先确定X可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解的值,据此分类讨论①.,②.,③.,④.四种情况确定满足的所有可能的取值,然后求解相应的概率值即可确定的值.【详解】(1)当时,X的所有可能取值是.X的概率分布为,.(2)设和是从中取出的两个点.因为,所以仅需考虑的情况.①若,则,不存在的取法;②若,则,所以当且仅当,此时或,有2种取法;③若,则,因为当时,,所以当且仅当,此时或,有2种取法;④若,则,所以当且仅当,此时或,有2种取法.综上,当时,X的所有可能取值是和,且.因此,.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.
22.某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%(1)求第n年初M的价值an的表达式(2)设An=,若An大于80万元,则M继续使用,否则须在第n年初对M更新.问:该企业必须在第几年的年初对设备M更新?请说明理由参考答案:(1)当n≤6时,数列{an}是首项为120,公差为-10的等差数列.an=120-10(n-1)=130-10n;当n≥6时,数列{an}是以a6为首项,公比为的等比数列,又a6=70,所以an=70×n-6.因此,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同 仲裁诉讼条款
- 大班音乐绘本《月光长廊》课件
- 2024上海市非定期集装箱道路货物运输合同
- 三年级语文上册第一单元测试卷-基础知识与综合能力篇 含答案 部编版
- 2024家庭水电装修合同书
- 2024收银员聘用合同
- 2024标准销售代理合同格式
- 深圳大学《哲学经典与人生》2021-2022学年第一学期期末试卷
- 深圳大学《形体训练(流行舞蹈)》2022-2023学年第一学期期末试卷
- 合同样本-土建合同范本8篇
- FURUNO雷达使用说明书0001
- 大华网络摄像机检测报告DHIPCHFW12XYZM
- 湘美版 六年级(上)第5课 纸魔方 (作品展示PPT)
- 史韵长河巍峨丰碑——世界建筑史上的奇迹万里长城
- T管护理-PPT课件 (2)
- 医院急危重症患者院内转运交接单
- NRS评分表参考
- 胡壮麟《语言学教程》测试习题及答案
- 绝对成交的销售技巧_图文ppt课件
- 铸造公司之 熔炼作业指导书
- 一年级北师大下学期数学几何图形专项过关题
评论
0/150
提交评论