曲线的切线方程公式_第1页
曲线的切线方程公式_第2页
曲线的切线方程公式_第3页
曲线的切线方程公式_第4页
曲线的切线方程公式_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

曲线的切线方程公式高频考点:曲线的切线方程公式高三数学复习正处于紧张阶段,我们应该重视学生数学能力的培养,教会学生将知识转化成能力的本领,下面是小编为大家整理的曲线的切线方程公式,希望能帮助到大家!曲线的切线方程公式以P为切点的切线方程:y-f(a)=f'(a)(x-a);若过P另有曲线C的切线,切点为Q(b,f(b)),则切线为y-f(a)=f'(b)(x-a),也可y-f(b)=f'(b)(x-b),并且[f(b)-f(a)]/(b-a)=f'(b)。如果某点在曲线上设曲线方程为y=f(x),曲线上某点为(a,f(a))求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)如果某点不在曲线上设曲线方程为y=f(x),曲线外某点为(a,b)求对曲线方程求导,得到f'(x),设:切点为(x0,f(x0)),将x0代入f'(x),得到切线斜率f'(x0),由直线的点斜式方程,得到切线的方程y-f(x0)=f'(x0)(x-x0),因为(a,b)在切线上,代入求得的切线方程,有:b-f(x0)=f'(x0)(a-x0),得到x0,代回求得的切线方程,即求得所求切线方程。高三数学复习技巧1.加强日常的反思总结有些老师经常将总结好的知识点呈现给学生,本以为这样会节省复习时间,但最终效果却不尽人意。因为,学生没有通过自我总结,没有那么深的印象,自然也就没有那么好的效果。对此,学生在日常复习中,一定要注意总结归纳,总是结论习得的过程。只有这样才能增强学习体验,强化知识理解和记忆。另外,做过的习题同样需要再次反思整理,尤其是那些错题,正是学习不足的重要表现,需要我们复习时特别注意,将其整理成数学错题集。2.增强复习时的自我思考跟随老师能快速解题,自己时却不得要领,这是因为自我思考较少,没有形成正确的解题思维。对此,小编建议,学生在复习时,一定要重视自我探究、自我思考,并从中多总结解题思路,以此形成靠谱的数学直觉思维。至此,当学生拿到考试题,凭借第一感觉,就能知道怎么做。另外,老师在复习指导时,也要留给学生足够的思考时间,力图让他们暴露思维过程,这样才能做出针对性复习指导。教师,切忌一堂课面面俱到地串讲知识,效果多半并不明显。因为学习的本身还是要靠学生自己。3.侧重高考真题的训练学习本身还要靠学生自己,教师只是指导、督促而已。因此,学生要想在规定时间内得到更高分数,就必须加强日常习题练习,并形成举一反三的知识迁移能力。但并不是所有习题都适合拿来练习。这里小编重点提倡高考真题练习。因为真题是经过无数专家研制的科学、均衡试题,从各方面都进行了考量,没有比这再合适的了。并且,训练时,学生也要注意限时,毕竟考试时间有限。必要的放弃、排除、蒙题策略也要熟记于心。高考数学二轮复习方法1、回归课本,拓实基础抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是复习的重中之重。2、抓住重点内容,注重能力培养函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等重点内容,要把它们作为复习中的重中之重来处理,要一个一个专题去落实。3、重视错题本,及时整理(1)及时更正错题像这些错误,如不经过仔细分析,并采取有效措施,以后还会犯同样错误。对做错题目的及时反馈,是复习中的重要一环。(2)同类知识点的整理许多知识点,在各类试卷中均有出现,通过复习,整理出它们共同方法,减少以后碰到相同题型时的思考时间。(3)对数学思想方法的整理近年来,高考中明确指出知识考查的同时要考数学思想方法,这其中主要包括:函数与方程的思想方法、数形结合的思想方法、分类讨论的思想方法、转化与化归的思想方法等。高考数学冲刺复习方法调整复习方式,理清知识脉络在高考复习过程中很多师生忙于做各种模拟题、专项训练题。特别是最近,各区的模拟考试题更成为师生追逐的对象。做新题、做难题,往往忽视了教材,造成了考生基本概念不清楚,基本知识体系不完备。使得一些考生基础题拿不稳,中档题易失分,难题做不出,考分始终得不到提高。以考试说明为基础,结合近几年考试的真题梳理教材中的知识点和基本思想方法。逐点清理,理清每一个知识点的来龙去脉,使得每一个知识点对应的常规问题以及相应的解决思路考生均清楚明了。以数学研究的方法为线索,纵向梳理高中教材中体现的数学方法,以函数为例,纵观高中函数的研究过程,我们经历了从最初的通过图像的几何直观来探求函数的解析性质,到后来通过对解析式的代数分析研究确定图像的过程。从而对于函数的研究我们有一般的路径:先确定解析式与定义域,再研究奇偶性与周期性,确定单调性和最值,并以此为基础画出函数的大致图像。那么对于函数问题的解决路径也就清晰了,也加深了对研究函数的重要方法数形结合思想的理解。调整方向重点突破,理清解题思路近些年来高考题中每年都有一些创新题,这些问题往往成为考生的拦路虎,因此我们对创新题应重点关注。数学创新题,相对于传统的题目而言,具有背景新颖、内涵深刻、设问方式灵活,富有一定的创造性。这类题目以问题为核心,以探究为途径,以发现为目的,为高层次思维创造了条件,是挖掘、提炼和展示应用数学思想方法的良好载体。试题以试验、猜想、类比、归纳为突破,考查应用数学知识和方法来解决数学和现实生活中比较新颖的问题。对于这一类的问题我们要根据题目的特点做到:静心仔细阅读,敢于尝试推敲题意,大胆假设,小心求证。通过试算找规律,画图巧转化等都不难解决。可以通过对历年来的创新题的设问方式、解决路径做对比研究,体悟解决此类问题的一般方法。调整解题节奏,理清答题规范很多学生在答题过程中往往在基础题上赶时间,期望有足够的时间来思考最后大题。久而久之造成基础题因计算、审题等因素出现低级失误,中档题则因思虑不周,造成漏解或解题不规范而缺乏必要的解题步骤而失分。通常不必要的失分往往超过在最后大题上的得分。对大多数学生来说,在最后大题上多10分钟,并不会有太大的收获,不如放慢节奏减少低级失误,而在19、20、21题上注意答题规范争取不失分或少失分,提高总得分。对于基础一般的同学建议最后一题的第一题会做就做不会就不用看了。把重点方面前面已经做完的题目,尽量保证不出错。这样想想如果前面全对,单最后一题不做。都有130+了。对于好的同学,那么最后一题也要抓牢。高考数学重要知识点1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11、数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论