北京市朝阳区高三上学期期中考试理科数学Word版含解析试题_第1页
北京市朝阳区高三上学期期中考试理科数学Word版含解析试题_第2页
北京市朝阳区高三上学期期中考试理科数学Word版含解析试题_第3页
北京市朝阳区高三上学期期中考试理科数学Word版含解析试题_第4页
北京市朝阳区高三上学期期中考试理科数学Word版含解析试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市朝阳区2013-2014学年度高三年级第一学期期中统一考试理科数学第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,.若,则实数的值是()A.B.C.或D.或或2.命题:对任意,的否定是()A.:对任意,B.:不存在,C.:存在,D.:存在,3.执行如图所示的程序框图,则输出的值为()A.91 B. 55 C.544.若,则()A.B.C.D.考点:1.对数函数的单调性;2.对数函数的图像与性质;3.指数函数的单调性5.由直线,,与曲线所围成的图形的面积等于()A.B.C.D.12.已知平面向量与的夹角为,,,则;若平行四边形满足,,则平行四边形的面积为.13.已知函数若,则实数的取值范围是.【答案】【解析】试题分析:根据所给的分段函数,画图像如下:可得,,所以函数从第一项开始,函数值先增大后减小再增大再减小,最后趋于平稳值,奇数项的值慢慢变大趋于平稳值,偶数项慢慢变小趋于平稳值,所以偶数项的值总是大于奇数项的值,所以,,的大小关系是.考点:1.数列的递推公式;2.数列的函数特性;3.指数函数的单调性三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知函数.(Ⅰ)求函数的最小正周期及最小值;(Ⅱ)若,且,求的值..………4分(Ⅰ)函数的最小正周期为,函数的最小值为.………6分(Ⅱ)由得.所以.………8分又因为,所以,………10分所以或.所以或.………13分考点:1.和角公式与差角公式;2.二倍角公式;3.三角函数的图像与性质;4.三角函数的最小正周期16.(本小题满分13分)在中,角,,所对的边分别为,,,且.(Ⅰ)若,求的面积;(Ⅱ)若,求的最大值.(Ⅱ)因为17.(本小题满分13分)已知等差数列的前项和为,,且,.(Ⅰ)求;(Ⅱ)若,求的值和的表达式.试题解析:(Ⅰ)等差数列的公差为,则18.(本小题满分14分)已知函数,.(Ⅰ)若函数的图象与轴无交点,求的取值范围;(Ⅱ)若函数在上存在零点,求的取值范围;(Ⅲ)设函数,.当时,若对任意的,总存在,使得,求的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】试题分析:(Ⅰ)函数的图像与轴无交点,那么函数对应的方程的判别式,解不等式即可;(Ⅱ)先判断函数在闭区间的单调性,然后根据零点存在性定理,可知,解方程组求得同时满足两个表达式的的取值范围;(Ⅲ)若对任意的,总存在,使,只需函数的值域为函数值域的子集即可.先求出函数在区间上的值域是,然后判断函数的值域.分,,三种情况进行分类讨论,当时,函数是一次函数,最值在两个区间端点处取得,所以假设其值域是,那么就有成立,解相应的不等式组即可.试题解析:(Ⅰ)若函数的图象与轴无交点,则方程的判别式,即,解得.………3分,解得;综上:实数的取值范围或.………14分考点:1.方程根的个数与判别式的关系;2.零点存在性定理;3.二次函数在闭区间上的值域;4.一次函数的单调性;5.二次函数的图像与性质19.(本小题满分14分)已知函数,.(Ⅰ)求函数的单调递增区间;(Ⅱ)设,,,为函数的图象上任意不同两点,若过,两点的直线的斜率恒大于,求的取值范围.试题解析:(Ⅰ)依题意,的定义域为,.(ⅰ)若,当时,,为增函数.(ⅱ)若,恒成立,故当时,为增函数.20.(本小题满分13分)如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”.(Ⅰ)设是一对“4项相关数列”,求和的值,并写出一对“项相关数列”;(Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由;(Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.【答案】(Ⅰ);;:8,4,6,5;:7,2,3,1;(Ⅱ)不存在,理由见解析;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)依题意有,,以及,求得以及的值,写出符合条件的数列即可,答案不唯一;(Ⅱ)先假设存在,利用反证法证明得出矛盾,即可证明满足已知条件的“10项相关数列”不存在.依题意有,以及成立,解出与已知矛盾,即证;(Ⅲ)对于确定的,任取一对“项相关数列”,构造新数对,,则可证明新数对也是“项相关数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论