版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市高堂中学2022年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为A.588
B.480
C.450
D.120参考答案:B略2.在区间上随机取一个数,则事件“”发生的概率为A.
B.
C.
D.参考答案:C略3.i是虚数单位,若
(a,b∈R),则乘积ab的值是A.-15
B.-3
C.3
D.15参考答案:B∵.∴a=-1,b=3.∴ab=-3,故选择B.4.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是(
)A. B. C. D.参考答案:D【分析】求出以为圆心,以边长为半径,圆心角为的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形的面积就是莱洛三角形的面积,运用几何概型公式,求出概率.【详解】设等边三角形的边长为,设以为圆心,以边长为半径,圆心角为的扇形的面积为,则,,莱洛三角形面积为,则,在此图形内随机取一点,则此点取自等边三角形内的概率为,,故本题选D.【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.5.过直线x+y=0上一点P作圆C:(x+1)2+(y﹣5)2=2的两条切线l1,l2,A,B为切点,当CP与直线y=﹣x垂直时,∠APB=()A.30° B.45° C.60° D.90°参考答案:C【考点】圆的切线方程.【专题】计算题;转化思想;综合法;直线与圆.【分析】判断圆心与直线的关系,在直线上求出特殊点,利用切线长、半径以及该点与圆心连线构成直角三角形,求出∠APB的值.【解答】解:显然圆心C(﹣1,5)不在直线y=﹣x上.由对称性可知,只有直线y=﹣x上的特殊点,这个点与圆心连线垂直于直线y=﹣x,从这点做切线才能关于直线y=﹣x对称.所以该点与圆心连线所在的直线方程为:y﹣5=x+1即y=6+x,与y=﹣x联立,可求出该点坐标为(﹣3,3),所以该点到圆心的距离为=2,由切线长、半径以及该点与圆心连线构成直角三角形,又知圆的半径为.所以两切线夹角的一半的正弦值为=,所以夹角∠APB=60°故选:C.【点评】本题是中档题,考查直线与圆的位置关系,直线与圆相切的关系的应用,考查计算能力,常考题型.6.函数y=ax2+bx与y=(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A. B. C. D.参考答案:D【考点】二次函数的图象;对数函数的图象与性质.【分析】可采用反证法做题,假设A和B的对数函数图象正确,由二次函数的图象推出矛盾,所以得到A和B错误;同理假设C和D的对数函数图象正确,根据二次函数图象推出矛盾,得到C错误,D正确.【解答】解:对于A、B两图,||>1而ax2+bx=0的两根为0和﹣,且两根之和为﹣,由图知0<﹣<1得﹣1<<0,矛盾,对于C、D两图,0<||<1,在C图中两根之和﹣<﹣1,即>1矛盾,C错,D正确.故选:D.7.设点P在曲线y=ex上,点Q在曲线y=lnx上,则|PQ|最小值为(
) A. B. C. D.ln2参考答案:A考点:反函数.专题:函数的性质及应用.分析:考虑到两曲线关于直线y=x对称,求丨PQ丨的最小值可转化为求P到直线y=x的最小距离,再利用导数的几何意义,求曲线上斜率为1的切线方程,从而得此距离解答: 解:∵曲线y=ex(e自然对数的底数)与曲线y=lnx互为反函数,其图象关于y=x对称,故可先求点P到直线y=x的最近距离d,设曲线y=ex上斜率为1的切线为y=x+b,∵y′=ex,由ex=1,得x=0,故切点坐标为(0,1),即b=1,∴d==,∴丨PQ丨的最小值为2d=.故选:A点评:本题主要考查了互为反函数的函数图象的对称性,导数的几何意义,曲线的切线方程的求法,转化化归的思想方法8.一颗正方体骰子,共六个面的点数分别是1、2、3、4、5、6,将这颗骰子排掷三次观察向上的点数,则三次点次和为16的概率是
(
)
A.
B.
C.
D.参考答案:C略9.设,不等式的解集是,则等于(
)A.
B.
C.
D.参考答案:B10.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为……() A. B. C. D.参考答案:A6节课共有种排法.语文、数学、外语三门文化课中间隔1节艺术课有种排法,三门文化课中、都相邻有种排法,三门文化课中有两门相邻有,故所有的排法有,所以相邻两节文化课之间最多间隔1节艺术课的概率为,选A.
二、填空题:本大题共7小题,每小题4分,共28分11.已知实数,满足,则的最大值为
.参考答案:12.设P、Q为△ABC内的两点,且,则△ABP的面积与△ABQ的面积之比为____
_参考答案:13.某几何体的三视图(单位:cm)如图所示,则该几何体的体积 为
▲
cm3.参考答案:12cm3
略14.请阅读下列材料:若两个正实数满足,求证:.证明:构造函数,因为对一切实数,恒有,所以,从而得,所以.根据上述证明方法,若个正实数满足时,你能得到的结论是__________________.参考答案:【知识点】类比推理.M1
解析:类比给出的材料,构造函数,由对一切实数,恒有,所以,即可得到结论.故答案为:【思路点拨】类比给出的材料,构造函数,由对一切实数,恒有,所以,即可得到结论.15.已知变量x,y满足约束条件,目标函数Z=e2x+y的最大值为.参考答案:e2考点: 简单线性规划.专题: 不等式的解法及应用.分析: 设z=2x+y,作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答: 解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y,由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点D(1,0)时,直线y=﹣2x+z的截距最大,此时z最大.代入目标函数z=2x+y得z=2×1+0=2.即z=2x+y的最大值为2,则Z=e2x+y的最大值为e2.故答案为:e2.点评: 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.16.若不等式组表示的平面区域是一个锐角三角形,则实数的取值范是
.[参考答案:略17.若复数满足(是虚数单位),则
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
参考答案:解:(Ⅰ)由图知,在服药的50名患者中,指标的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标的值小于60的概率为.(Ⅱ)由图知,A,B,C,D四人中,指标的值大于1.7的有2人:A和C.所以的所有可能取值为0,1,2..所以的分布列为012故的期望.(Ⅲ)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.
19.(本小题满分10分)如图,AB为圆的直径,P为圆外一点,过P点作PCAB于C,交圆于D点,PA交圆于E点,BE交PC于F点.(I)求证:P=ABE;(Ⅱ)求证:CD2=CF·CP.参考答案:证明:(Ⅰ),所以在中,在中,所以……………….5分(Ⅱ)在中,,由①得∽,∴,∴,所以CD2=CF·CP。….10分20.(本小题满分12分)一个四棱锥的三视图和直观图如图4所示,其中俯视图中.为侧棱的中点.求证:平面;若为侧棱上的一点,且,则为何值时,平面?并求此时几何体的体积.参考答案:(1)由三视图可知该四棱锥的底面ABCD是菱形,且有一角为,边长为2,锥体高度为1。
………1分设AC,BD和交点为O,连OE,OE为△DPB的中位线,
………2分OE//PB,EO面EAC,PB面EAC,PB//面AEC
………5分
(2)过O作OFPA垂足为F在Rt△POA中,PO=1,AO=,PA=2,PO2=PF·PA,2PF=1,
…7分在菱形中BDAC,又因为PO面ABCD,所以BDPO,及BD面APO,所以BDPA,又OFPA,从而PA平面BDF
…9分
当时,在△POA中过F作FH//PO,则FH面BCD,FH=.
…12分21.已知在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渣土购买及环保处理服务2025年度合同3篇
- 二零二五年度荒料销售与风险管理合同3篇
- 二零二五版房地产租赁合同增加补充协议范本3篇
- 二零二五年度餐饮公司环保设施投资合作合同范本3篇
- 二零二五版本二手房买卖合同含房屋相邻权及公共设施使用协议2篇
- 二零二五版中小学教师派遣及教学资源整合合同3篇
- 二零二五年度文化产业园区场地使用权买卖合同范例3篇
- 基于2025年度的环保服务合同2篇
- 二零二五版企业股权激励方案评估与优化合同3篇
- 个人出版作品稿酬合同(2024版)3篇
- 苏北四市(徐州、宿迁、淮安、连云港)2025届高三第一次调研考试(一模)语文试卷(含答案)
- 第7课《中华民族一家亲》(第一课时)(说课稿)2024-2025学年统编版道德与法治五年级上册
- 2024年医销售药销售工作总结
- 急诊科十大护理课件
- 山东省济宁市2023-2024学年高一上学期1月期末物理试题(解析版)
- GB/T 44888-2024政务服务大厅智能化建设指南
- 2025年上半年河南郑州荥阳市招聘第二批政务辅助人员211人笔试重点基础提升(共500题)附带答案详解
- 山东省济南市历城区2024-2025学年七年级上学期期末数学模拟试题(无答案)
- 国家重点风景名胜区登山健身步道建设项目可行性研究报告
- 投资计划书模板计划方案
- 《接触网施工》课件 3.4.2 隧道内腕臂安装
评论
0/150
提交评论