山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析_第1页
山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析_第2页
山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析_第3页
山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析_第4页
山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市滕州市第十六中学2021-2022学年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A. B. C. D.参考答案:A【考点】椭圆的应用;椭圆的简单性质.【分析】由△ABF2是正三角形可知,即,由此推导出这个椭圆的离心率.【解答】解:由题,∴即∴,∴,解之得:(负值舍去).故答案选A.2.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为(

)A.5,10,15,20

B.2,6,10,14C.2,4,6,8

D.5,8,11,14参考答案:A3.函数的定义域是

A.

B.

C.

D.参考答案:B略4.已知集合,若,则实数a的值为(

)A.1或2 B.0或1C.0或2 D.0或1或2参考答案:D【分析】就和分类讨论即可.【详解】因为当时,,满足;当时,,若,所以或.综上,的值为0或1或2.故选D.【点睛】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.5.三个正整数x,y,z满足条件:,,,若,则y的最大值是(

)A.12 B.13 C.14 D.15参考答案:B【分析】由题意结合不等式的性质和不等式的传递性即可确定y的最大值.【详解】由不等式的性质结合题意有:,即,由于都是正整数,故y的最大值是13.故选:B.【点睛】本题主要考查不等式的性质及其应用,不等式的传递性等知识,意在考查学生的转化能力和计算求解能力.6.等差数列中,,,则的值为(

(A)15

(B)23

(C)25

(D)37参考答案:B7.抛物线y2=4x的焦点为F,点A(3,2),P为抛物线上一点,且P不在直线AF上,则△PAF周长的最小值为(

)A.4 B.5 C. D.参考答案:C【分析】求周长的最小值,即求的最小值,设点在准线上的射影为点,则根据抛物线的定义,可知,因此问题转化为求的最小值,根据平面几何知识,当、、三点共线时,最小,即可求出的最小值,得到答案。【详解】由抛物线为可得焦点坐标,准线方程为:,由题可知求周长的最小值,即求的最小值,设点在准线上的射影为点,则根据抛物线的定义,可知,因此求的最小值即求的最小值,根据平面几何知识,当、、三点共线时,最小,所以又因为,所以周长的最小值为,故答案选C【点睛】本题考查抛物线的定义,简单性质的应用,判断出、、三点共线时最小,是解题的关键,属于中档题。8.有一段演绎推理是这样的“任何实数的平方都大于0,因为,所以”结论显然是错误的,是因为

A.大前提错误

B.小前提错误

C.推理形式错误

D.非以上错误参考答案:A9.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是(

)A、总体是240

B

个体是每一个学生C、样本是40名学生

D

样本容量是40参考答案:D10.已知圆与直线

及都相切,圆心在直线,则圆的方程为(

)A.

B.C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知椭圆+=1的长轴在y轴上,若焦距为4,则m=

.参考答案:8【考点】椭圆的简单性质.【分析】根据条件可得a2=m﹣2,b2=10﹣m,c2=a2﹣b2=2m﹣12,由焦距为4,即c=2.即可得到m的值.【解答】解:由椭圆+=1的长轴在y轴上,则a2=m﹣2,b2=10﹣m,c2=a2﹣b2=2m﹣12.由焦距为4,即2c=4,即有c=2.即有2m﹣12=4,解得m=8.故答案为:812.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得线性方程=+x中=﹣2,据此预测当气温为5℃时,用电量的度数约为.参考答案:40【考点】回归分析的初步应用.【专题】计算题;概率与统计.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.【解答】解:由表格得=(14+12+8+6)÷4=10,=(22+26+34+38)÷4=30即样本中心点的坐标为:(10,40),又∵样本中心点(10,40)在回归方程上且b=﹣2∴30=10×(﹣2)+a,解得:a=50,∴当x=5时,y=﹣2×(5)+50=40.故答案为:40.【点评】本题考查线性回归方程,两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.13.在复平面内,若所对应的点在第二象限,则实数的取值范围是___________.

参考答案:略14.设a>0,b>0,若是3a与3b的等比中项,则+的最小值是

.参考答案:4【考点】基本不等式在最值问题中的应用.【专题】计算题;压轴题.【分析】先根据等比中项的性质求得a+b的值,进而利用基本不等式取得ab的最大值,把+化简整理,根据ab的范围,求得答案.【解答】解:∵是3a与3b的等比中项∴3a?3b=3a+b=3∴a+b=1∴ab≤=(当a=b时等号成立)∴+==≥4.故答案为:4【点评】本题主要考查了基本不等式在最值问题中的应用.使用基本不等式时要注意等号成立的条件.15..参考答案:8π+ln2﹣【考点】定积分.【分析】根据定积分几何意义和定积分的计算法则计算即可.【解答】解:根据定积分的几何意义表示以原点为圆心,以及半径为4的圆的面积的二分之一,故=×16π=8π,因为x3奇函数,故x3dx=0,因为(﹣x)dx=(lnx﹣x2)|=(ln2﹣2)﹣(ln1﹣)=ln2﹣,故原式=8π+0+ln2﹣=8π+ln2﹣,故答案为:8π+ln2﹣【点评】本题考查了定积分几何意义和定积分的计算,属于中档题.16.抛物线x2=4y的焦点坐标为.参考答案:(0,1)【考点】抛物线的简单性质.【专题】计算题.【分析】由抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,即可得到抛物线的焦点坐标.【解答】解:抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,∴∴抛物线x2=4y的焦点坐标为(0,1)故答案为:(0,1)【点评】本题以抛物线的标准方程为载体,考查抛物线的几何性质,解题的关键是定型与定量.17.某几何体的三视图如图所示,则它的体积是___________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,CC1⊥底面ABC,AC⊥CB,点D是AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面CDB1.(Ⅲ)设AB=2AA1,AC=BC,在线段A1B1上是否存在点M,使得BM⊥CB1?若存在,确定点M的位置;若不存在,说明理由.参考答案:【考点】直线与平面垂直的性质;直线与平面平行的判定.【专题】证明题;图表型;数形结合;数形结合法;空间位置关系与距离.【分析】(I)先证明CC1⊥AC,又AC⊥BC,BC∩CC1=C,可证AC⊥平面BCC1B1,从而可证AC⊥BC1.(Ⅱ)设CB1与C1B的交点为E,连结DE,可证DE∥AC1.即可判定AC1∥平面CDB1.(Ⅲ)可证AA1⊥CD,CD⊥AB,从而证明CD⊥平面AA1B1B,取线段A1B1的中点M,连接BM.可证CD⊥BM,BM⊥B1D,即可证明BM⊥平面B1CD,从而得证BM⊥CB1.【解答】(本小题满分14分)证明:(I)在三棱柱ABC﹣A1B1C1中,因为CC1⊥底面ABC,AC?底面ABC,所以CC1⊥AC.又AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.而BC1?平面BCC1B1,则AC⊥BC1.…(Ⅱ)设CB1与C1B的交点为E,连结DE,因为D是AB的中点,E是BC1的中点,所以DE∥AC1.因为DE?平面CDB1,AC1?平面CDB1,所以AC1∥平面CDB1.…(Ⅲ)在线段A1B1上存在点M,使得BM⊥CB1,且M为线段A1B1的中点.证明如下:因为AA1⊥底面ABC,CD?底面ABC,所以AA1⊥CD.

由已知AC=BC,D为线段AB的中点,所以CD⊥AB.又AA1∩AB=A,所以CD⊥平面AA1B1B.取线段A1B1的中点M,连接BM.因为BM?平面AA1B1B,所以CD⊥BM.由已知AB=2AA1,由平面几何知识可得BM⊥B1D.又CD∩B1D=D,所以BM⊥平面B1CD.又B1C?平面B1CD,所以BM⊥CB1.…【点评】本题主要考查了直线与平面平行的判定,直线与平面垂直的判定和性质,考查了空间想象能力和推理论证能力,属于中档题.19.设函数.(I)求的单调区间.(II)求在区间上的最大值.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的单调区间,得到函数的最大值和最小值即可.【解答】解:(I)因为其中,所以,令,解得:,令,解得:,所以的增区间为,减区间为.(II)由(I)在单调递增,在上单调递减,∴.20.(本小题满分14分)

已知数列的前n项和,数列满足(1)求数列的通项;(2)求数列的通项;(3)若,求数列的前n项和。参考答案:(1)∵,∴.

∴.

……2分

当时,,∴

………4分(2)∵∴,

,以上各式相加得:

………………9分(3)由题意得∴,∴,∴=,∴.

………14分21.一个口袋里装有7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有一个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?参考答案::1.从口袋里的8个球中任取5个球,不同取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论