




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2三角形全等的判定第十二章全等三角形第3课时
“角边角”、“角角边”
八年级数学上(RJ)
情境引入学习目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.导入新课如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?情境引入321讲授新课三角形全等的判定(“角边角”定理)一问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC图一图二“两角及夹边”“两角和其中一角的对边”它们能判定两个三角形全等吗?作图探究先任意画出一个△ABC,再画一个△A′B′C′,
使A′B′=AB,∠A
′=∠A,∠B′=∠B
(即使两角和它们的夹边对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ACBACB作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于点C'.想一想:从中你能发现什么规律?知识要点
“角边角”判定方法文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).几何语言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′例1
已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.
∠ABC=∠DCB(已知),
BC=CB(公共边),∠ACB=∠DBC(已知),证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).典例精析BCAD
判定方法:两角和它们的夹边对应相等两个三角形全等.例2
如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:AD=AE.ABCDE分析:证明△ACD≌△ABE,就可以得出AD=AE.证明:在△ACD和△ABE中,∠A=∠A(公共角),AC=AB(已知),∠C=∠B
(已知),∴△ACD≌△ABE(ASA),∴AD=AE.例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.∠B=∠E,
BC=EF,
∠C=∠F.证明:在△ABC中,∠A+∠B+∠C=180°.∴△ABC≌△DEF(ASA).∴∠C=180°-∠A-∠B.同理
∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,用“角角边”判定三角形全等二两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结∠A=∠A′(已知),∠B=∠B′
(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).ABCA′B′C′例4
如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∠ADB=∠CEA=90°,
∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS).(2)DE=BD+CE.(2)DE=BD+CE.∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.证明:∵△BDA≌△AEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.例4
如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等B.一定全等C.不一定全等D.以上都不对当堂练习AB
3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件
,才能使△ABC≌△DEF
(写出一个即可).∠B=∠E或∠A=∠D或
AC=DF(ASA)(AAS)(SAS)AB=DE可以吗?×AB∥DE学以致用:如图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北师范大学《文创产品设计》2023-2024学年第二学期期末试卷
- 南京信息工程大学《人力资源管理原著选读双语》2023-2024学年第二学期期末试卷
- 三明学院《过程分子生物学》2023-2024学年第二学期期末试卷
- 文娱产业融资考核试卷
- 医疗实验室信息化管理系统应用考核试卷
- 木片在航空航天领域的特殊应用考核试卷
- 文具行业法律法规解读考核试卷
- 电子专用胶粘剂与密封材料考核试卷
- 煤炭批发企业品牌形象塑造考核试卷
- 电缆线路施工中的环境保护与绿色施工技术考核试卷
- 第14课 辽宋夏金元时期的科技与文化-2024-2025学年七年级历史下册互动课堂教学设计宝典(统编版2024)
- 2025年广东省深圳市21校初三一模英语试题及答案
- 白石洞等四座水库水资源特许经营项目实施方案
- 2025年承包商入厂安全培训考试试题及答案5A
- 《民航飞机航电设备故障检测与诊断》全套教学课件
- 2024年广东公需课《百县千镇万村高质量发展工程与城乡区域协调发展》试题及答案
- 工商企业管理毕业论文19904
- 防极端天气安全教育主题班会
- 2025湖北随州国资本投资运营集团限公司人员招聘27人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年四川烟草商业系统招聘考试真题
- 2025年许昌电气职业学院单招职业技能测试题库附答案
评论
0/150
提交评论