版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章数学基础第一页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述2、点的齐次坐标其中:a=ωpx,b=ωpy,c=ωpz。第二页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述3、坐标轴的方向描述若用
来表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有第三页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述3、坐标轴的方向描述规定:列阵[abc0]T中第四个元素为零,且a2+b2+c2=1,表示某轴(或某矢量)的方向;列阵[abcω]T中第四个元素不为零,则表示空间某点的位置。第四页,共三十六页,编辑于2023年,星期四Robotics数学基础例3.1用齐次坐标写出图中矢量uvw的方向列阵。第五页,共三十六页,编辑于2023年,星期四第六页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述4、动坐标系位姿的描述动坐标系位姿的描述就是用位姿矩阵对动坐标系原点位置和坐标系各坐标轴方向的描述。该位姿矩阵为(
)的方阵。第七页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述5、刚体位姿的描述机器人的每一个连杆均可视为一个刚体,若给定了刚体上某一点的位置和该刚体在空中的姿态,则这个刚体在空间上是唯一确定的,可用唯一一个位姿矩阵进行描述。第八页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-2:下图表示固连于刚体的坐标系{B}位于OB点,XB=10,YB=5,ZB=0。ZB与画面垂直,坐标系{B}相对固定坐标系{A}有一个30°的偏转,试写出表示刚体位姿的坐标系{B}的(4×4)矩阵表达式。第九页,共三十六页,编辑于2023年,星期四Robotics数学基础3.1工业机器人位姿描述6、手部位姿描述第十页,共三十六页,编辑于2023年,星期四Robotics数学基础手部的位置矢量为固定参考系原点指向手部坐标系{B}原点的矢量p,手部的方向矢量为n、o、a。于是手部的位姿可用(4X4)矩阵表示为第十一页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-3:下图表示手部抓握物体Q,物体为边长2个单位的正立方体,写出表达该手部位姿的矩阵式。抓握物体Q的手部第十二页,共三十六页,编辑于2023年,星期四Robotics数学基础7、目标物位姿的描述
下图中的物体可以由{(1,0,0),(-1,0,0),(-1,0,2),(1,0,2),(1,4,0),(-1,4,0)}表示。如果该物体在基坐标系中先绕z轴旋转90°,再绕y轴旋转90°,再沿x轴平移4,求物体6个顶点的位置。xyzoo1xyzoo1x1y1z1xyzoo1z1y1x1xyzoo1x1z1y1第十三页,共三十六页,编辑于2023年,星期四Robotics数学基础这个变换矩阵表示对原参考坐标系重合的坐标系进行旋转和平移操作。第十四页,共三十六页,编辑于2023年,星期四Robotics数学基础绝对变换:如果所有的变换都是相对于固定坐标系中各坐标轴旋转或平移,则依次左乘,称为绝对变换。相对变换:如果动坐标系相对于自身坐标系的当前坐标轴旋转或平移,则齐次变换为依次右乘,称为相对变换。第十五页,共三十六页,编辑于2023年,星期四Robotics数学基础3.2齐次变换及运算1、齐次坐标性质
三维空间中任一点P可以用直角坐标表示,也可以用不同时为零的4个数(x1,x2,x3,x4)来表示,称为齐次方程。
齐次坐标与直角坐标的关系为:第十六页,共三十六页,编辑于2023年,星期四Robotics数学基础齐次方程有以下性质:空间一点P的直角坐标是单值的,但对应的齐次坐标是多值的;即齐次坐标可以是
,其中a为非零值。x4为比例坐标,表示点P的各直角坐标值与对应的齐次坐标之间的比例关系,x4不为零时,齐次坐标才能确定三维空间中唯一的点。直角坐标原点的齐次坐标为(0,0,0,x4),x4=0时,是无意义的。齐次坐标(1,0,0,0)表示指向无穷远的ox轴方向,同理(0,1,0,0)和(0,0,1,0)则表示指向无穷远的oy,oz轴方向。第十七页,共三十六页,编辑于2023年,星期四Robotics数学基础2、齐次坐标的矢量计算三维空间矢量为
,其中
-ox,oy,oz轴上的单位矢量矢量
的齐次坐标为[x,y,z,w]T,一般常取w=1。矢量的计算方法:(1)sa=s[a1,a2,a3,a4]T=[sa1,sa2,sa3,sa4]T,其中s为标量。(2)(3)(4)
其中(5)T第十八页,共三十六页,编辑于2023年,星期四Robotics数学基础3.2齐次变换及运算3、平移的齐次变换点的平移变换第十九页,共三十六页,编辑于2023年,星期四Robotics数学基础注:①算子左乘:表示点的平移是相对固定坐标系进行的坐标变换。②算子右乘:表示点的平移是相对动坐标系进行的坐标变换。③
该公式亦适用于坐标系的平移变换、
物体的平移变换,如机器人手部的平移变换。
第二十页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-4:有下面三种情况:动坐标系{A}相对于固定坐标系的X0、Y0、Z0轴作(-1,2,2)平移后到{A’};动坐标系{A}相对于自身坐标系的X、Y、Z轴分别作(-1,2,2)平移后到{A”};物体Q相对于固定坐标系(2,6,0)平移后Q’。第二十一页,共三十六页,编辑于2023年,星期四Robotics数学基础已知:写出坐标系{A’}、{A’’}以及物体Q’的矩阵表达式。
第二十二页,共三十六页,编辑于2023年,星期四Robotics数学基础2、
旋转的齐次变换第二十三页,共三十六页,编辑于2023年,星期四Robotics数学基础绕Z轴、X轴、Y轴旋转的算子第二十四页,共三十六页,编辑于2023年,星期四Robotics数学基础如图所示为点A绕任意过原点的单位矢量k旋转
角的情况。
分别是k矢量在固定参考坐标轴X,Y,Z上三个分量,且
。可以证明,其旋转齐次变换矩阵为:注:①该式为一般旋转齐次变换通式,概括了绕X,Y,Z轴进行旋转变换的情况。反之,当给出某个旋转变换矩阵,则可求得k及转角。②变换算子公式不仅适用于点的旋转,也适用于矢量、坐标系、物体的旋转。③左乘是相对固定坐标系的变换,右乘是相对于动坐标的变换。第二十五页,共三十六页,编辑于2023年,星期四Robotics数学基础
例3-5已知坐标系中U的位置矢量U=[7321]T,将此点绕Z轴旋转90°,再绕Y轴旋转90°,求旋转变换后所得的点W。第二十六页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-5:单臂操作手的手腕具有一个自由度。已知手部起始位姿矩阵为
若手臂绕Z0轴旋转+90°,则手部到达G2;若手臂不动,仅手部绕手腕Z1
轴旋转+90°,则手部到达G3,写出手部坐标轴{G2}及{G3}的矩阵表达式。第二十七页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-6:已知坐标系中U的位置矢量U=[7321]T,将此点绕Z轴旋转90°,再绕Y轴旋转90°,W在作
的平移至点E,求变换后所得的点E。
平移加旋转变换第二十八页,共三十六页,编辑于2023年,星期四Robotics数学基础绝对变换:如果所有的变换都是相对于固定坐标系中各坐标轴旋转或平移,则依次左乘,称为绝对变换。相对变换:如果动坐标系相对于自身坐标系的当前坐标轴旋转或平移,则齐次变换为依次右乘,称为相对变换。第二十九页,共三十六页,编辑于2023年,星期四Robotics数学基础例3-8:下图(a)示出摆放在坐标系中的两个相同的楔形物体。要求把它们重新摆放在图(b)所示位置。用数字值给出两个描述重新摆置的变换序列,每个变换表示沿某个轴平移或绕该轴旋转。在重置过程中,必须避免两楔形物体的碰撞。第三十页,共三十六页,编辑于2023年,星期四Robotics数学基础习题:3.9解一第三十一页,共三十六页,编辑于2023年,星期四Robotics数学基础习题:3.9解一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人股权委托管理转让合同范本3篇
- 2025年度个人合伙退伙合同范本精要3篇
- 现代社会生活中的常见隐患及其家庭预防策略研究报告
- 智慧医疗与健康科技的发展
- 二零二五年度车间承包与安全生产责任合同4篇
- 游戏化学习小学生注意力培养的新模式
- 网络安全技术与隐私保护措施研究
- 2025年度虚拟现实体验店租赁合同
- 网络环境下家庭信息的安全存储与分享策略
- 玉林2025年广西玉林市第一人民医院招聘24人笔试历年参考题库附带答案详解
- 2024人教新目标(Go for it)八年级英语上册【第1-10单元】全册 知识点总结
- 剧本杀店长合同范例
- 华中师范大学第一附中2025届高考仿真模拟数学试卷含解析
- 农村自建房施工合同模板
- GB/T 44731-2024科技成果评估规范
- 影视动画设计与制作合同
- 2023学年广东省深圳实验学校初中部九年级(下)开学语文试卷
- 企业新员工培训师带徒方案
- 2025届河南省郑州一中高三物理第一学期期末学业水平测试试题含解析
- 个体工商户章程(标准版)
- 河南省安阳市2024年中考一模语文试卷(含答案)
评论
0/150
提交评论