




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节系统的稳定性第一页,共四十四页,编辑于2023年,星期四稳定性和代数稳定判据(Stabilityofthesystemandthealgebracriteria)典型输入作用和时域性能指标(Typicalinputandtimeperformanceindex)一阶系统的瞬态响应(Transientresponseofoneorderdynamicalsystem)二阶系统的瞬态响应(Transientresponseoftwoorderdynamicalsystem)稳态误差分析(Steadyerroranalyse)主要内容(Mainissues)第二页,共四十四页,编辑于2023年,星期四第一节系统的稳定性和
代数稳定判据
Section1Stabilityofthecontrolsystemandtheitsalgebraevaluationcriteria第三页,共四十四页,编辑于2023年,星期四1.稳定的基本概念和线性系统稳定的充要条件(Basicconceptofsystemstabilityanditsthesufficient,necessaryconditionofthelinearcontrolsystem)1)Stabilizingofcontrolsystemisthemostimportantconditionforsystemtorunproperly.2)Infact,therealsystemisalwaysaffectedbytheoutsideorinsidedisturbances,suchasloadvarying,energywave,systemparameterchanging,environmentchangingetc.3)Ifthesystemisunstable,systemwilldeparturetheinitialbalancestateunderanysmallwave,andwilldispersewiththetimegoing.4)Toanalyzethesystemstabilityandtomakeouttheplantoensurethesystemstableisthebasicgoalofcontroltheory.稳定的充要条件和属性第四页,共四十四页,编辑于2023年,星期四
稳定的基本概念(Basicconceptofstability):Ifthesystemisinthestateofbalance,itwilldepartthestateundertheeffectofoutsideexciting.whentheoutsideexcitingisdisappeared,thesystemwillreturntotheoriginalstateasitrunsforsolongtime.Thesystemisstable,orthesystemisoffstability.Orelsethesystemisunstable,orthesystemisofinstability.
第五页,共四十四页,编辑于2023年,星期四Considerthefollowdifferentialequation:+polynomialrelativewithinitialvalue稳定的充要条件和属性DoLaplacetransform:where:x(t)—inputy(t)—output;isconstants.第六页,共四十四页,编辑于2023年,星期四Thefirstitemiszerostatesolution,andisrelatedwiththeresponseexcitedbytheinput.Theseconditemiszeroinputsolution,andisrelatedwiththeresponseexcitedbytheinitialvalue.第七页,共四十四页,编辑于2023年,星期四necessaryandsufficientconditionoflinearsystemstabilizingis:allthesystemcharacteristicrootsareofnegativerealpart(Eigenvalue),orallthesystemcharacteristicrootsarelainonthelefthalfplaneofscomplexplane.稳定的充要条件和属性第八页,共四十四页,编辑于2023年,星期四充要条件说明ifthereisapositiverealrootforasystem,itmeansthesystemresponseisdispersive.ifthereisapairofpositiverealpartcomplexrootforasystem,itmeansthesystemresponseisperioddispersiveoscillation.bothcasesareunstable.
ifthereisazerorootforasystem,itmeansthesystemresponseisrandombalancestate.ifthereisapairofimaginaryrootsforasystem,itmeansthesystemresponseisoscillatingstateinaconstantsize.StablezoneNonstablezoneCriticalStablezoneSplane第九页,共四十四页,编辑于2023年,星期四Fortheoneordersystem,ifandonlyifarepositive,thesystemisstable.Ifandonlyifarepositive,thesystemisstable.For3ormoreordersystem,itismoredifficulttogettherootsofaalgebraequation.Howcanwedo?充要条件说明Notice:Systemstabilityisaqualityoflinearsystem,andisjustrelatedwiththesystemstructureandparameter,butnotrelatedwiththeinputsignal.
notrelatedwiththe
initialcondition.
Systemstabilityisjustrelatedwiththepolar,notrelatedwiththezero.Forthe2ordersystem第十页,共四十四页,编辑于2023年,星期四2.Routh-Hurwitzcriterion
Consideringthecharacteristicequationofthelinearsystem劳斯判据1).Routhcriterion:Thenecessaryandsufficientconditionofthesystemisasfollow:b.AlltheelementswhicharelainonthefirstcolumnoftheRoutharray,andarecomposedofthecoefficientsofthecharacteristicequationshouldbepositive.a.Allthepolynomialcoefficientsofthecharacteristicequationshouldbepositive;第十一页,共四十四页,编辑于2023年,星期四ThefirsttwolineelementsoftheRoutharrayconsistofthecoefficientsofcharacteristicequation.Thefirstrowelementsarecomposedofthecoefficientsan,an-2,an-4,...;Thesecondrowelementsarecomposedofthecoefficients
an-1,an-3,an-5,….HowtoconstructtheRouthtable?第十二页,共四十四页,编辑于2023年,星期四劳斯判据Therulestocalculatethe3throwelementsisasfollow:第十三页,共四十四页,编辑于2023年,星期四劳斯判据Therulestocalculatethe4throwelementsisasfollow:第十四页,共四十四页,编辑于2023年,星期四Accordingtotheabovesimilarmethod,theremainelementscanalsobelead.Therulestocalculatethe5throwelementsisasfollow:第十五页,共四十四页,编辑于2023年,星期四劳斯判据例子[example]consideringthesystemwhichcharacteristicequationis:①TowritedowntheRoutharrayasrightposition②Accordingtothenecessaryandsufficientconditionofastablesystem,wecanget:andTrytodeterminethesystemstability.productof2innercoefficientsminusproductof2outcoefficientsispositive.第十六页,共四十四页,编辑于2023年,星期四2)DiscussionofthespecialconditionoftheRoutharrayandsomeconclusionb.
ThesystemisunstableifalltheelementsinthefirstcolumnofRoutharrayarenotzerobutnotallarepositive.劳斯判据特殊情况a.ItwillnotaffectthesystemstabilitytomultipleordivideallelementsinarowoftheRoutharraywithapositivenumber;c.Italsoindicatethattherearesomecharacteristicrootsintherighthalfplanofcomplexnumberplanes.d.ThenumberoftheunstablerootsisequaltothechangedsignnumberofelementsinthefirstrankofRoutharray.第十七页,共四十四页,编辑于2023年,星期四[example]Assumethatthesystemcharacteristicequationis:-130(2)100()③Thereis2signchangesinthefirstcolumn.Trytofindthenumberofunstablerootofthesystem.Discuss:
①TolisttheRoutharray;②Thereisanegativenumberinthefirstcolumn.Thesystemisunstable.④
2unstablecharacteristicrootsareintherighthalfsplane.第十八页,共四十四页,编辑于2023年,星期四劳斯判据特殊情况
e.IfthefirstelementiszerobuttheothersinonelineoftheRouthtablearenotallzero,Anewmethodshouldbeconsidered.[Solution]:tosubstitutetheelement‘0’withaverysmallpositivenumber.Atlastcountingthesign-changednumber.Afterthentocalculatetheotherelementsonthelineorbelowtheline.第十九页,共四十四页,编辑于2023年,星期四[example]Consideringthecharacteristicequation:Let,then③
Thereis2signchangesthatmeans2unstablerootsintherighthalfplaneofcomplexnumberplanes.
②toanalyse:Trytofindthenumberofunstablerootofthesystem.Discuss:
①tolisttheRoutharray;Clearly,thereisanegativenumberinfirstcolumn.Thesystemisunstable.第二十页,共四十四页,编辑于2023年,星期四f.AllthenumbersinaRoutharrayrowarezero.Itmeansthatthereisapairofcharacteristicrootswhichareequalinsizeandoppositeinsign.劳斯判据特殊情况Thereare3casesas:apairofrealrootswhichareequalinsizeandoppositeinsign;orapairofconjugateimaginaryroots;or2pairofconjugatecomplexnumberrootswhicharesymmetrictotheimaginaryaxis.╳╳╳╳╳╳╳╳第二十一页,共四十四页,编辑于2023年,星期四[example][Solution]:toconstructanassistantalgebraequationofcomplexnumbervariablesaccordingtothecoefficientsofthelastrowinwhichthecoefficientsarenonzero.b.Todifferentiatetheassistantequationandgetthenewequationc.Tosubstitutethecoefficientsofthezerorowwiththecoefficientsofthenewequation.Notice:theassistantequationmustbeevenorder.第二十二页,共四十四页,编辑于2023年,星期四[example]todiscussthestabilityofthebelowsystem.168168130380劳斯判据特殊情况④tosimplifyit;Analyse:①tolisttheRoutharray;②tobuildtheassistantequation;③todifferentiatetheaboveequationtogetanewone;⑤tosubstitutethecoefficientswiththenewcoefficientsfromthesimplifiedequation.⑥tocontinuethelisttheRoutharray⑦todeterminetheunstableroots.第二十三页,共四十四页,编辑于2023年,星期四Itseemsthatthesystemisstablebecausetheelementsarebiggerthanorequaltozero.Clearlythesystemiscriticalstablethatmeansunstableinanengineeringmeaning.168168130380Tobuildanassistantequationasbelowandtosolveit,wemayget:第二十四页,共四十四页,编辑于2023年,星期四3).Hurwitzcriterion赫尔维茨判据ConsideringthecharacteristicequationofthelinearsystemThenecessaryandsufficientconditionofthesystemisasfollow:andWhere:ΔistheHurwitzdeterminant,andΔiisthehostsub-determinant.第二十五页,共四十四页,编辑于2023年,星期四①Eachofthehostdiagonalelementsisthecoefficientsofcharacteristicpolynomialfromthesecondtothelast.Problem1.HowtoconstructtheHurwitzarray?②Eachelementofeachrowbelowthehostdiagonalissomecoefficientsaccordingtosubscriptincreasing.③Eachelementofeachrowabovethehostdiagonalissomecoefficientsaccordingtosubscriptdecreasing.④Alltheelementis0whenthesubscriptisbiggerthannorsmallerthan0.subscriptdecreasingsubscriptincreasing第二十六页,共四十四页,编辑于2023年,星期四Problem2.Howtoconstructthehostsub-determinant?第二十七页,共四十四页,编辑于2023年,星期四赫尔维茨判据[example]:todiscussthestabilityof4ordersystemasbelow.Hurwitzdeterminantis:Thenecessaryandsufficientconditionis:第二十八页,共四十四页,编辑于2023年,星期四赫尔维茨判据的另一种形式ItisanotherformofHurwitzcriterion.where:isallthehostsub-determinantswithdifferentorder.4).Lienard-Chipard
criterionThenecessaryandsufficientconditionofthesystemis:Forthesystemwiththecharacteristicequationas:or第二十九页,共四十四页,编辑于2023年,星期四3.ApplicationofRouth–Hurwitzcriterion1)Todeterminethesystemstability[example]ifthesystemcharacteristicequationis:,trytodeterminethesystemstability.Analyse:①
TolisttheRoutharrayasbelow:2unstablerootsareintherighthalfplane.
Thesystemisunstable.②③
Thereis2signchanges第三十页,共四十四页,编辑于2023年,星期四[example]
ifthesystemcharacteristicequationis:trytodeterminethesystemstability.Analyse:systemcharacteristicequationcanberewriteas:TheHurwitzdeterminantis:Thehostsub-determinantcanbecalculatedasTheconclusionisthatthesystemisstable.第三十一页,共四十四页,编辑于2023年,星期四2)Toanalyzetheinfluenceofsystemparameterchanging[example]thesystemblockdiagramisgivenasbelow,trytodeterminethecriticalamplifyingcoefficient.[Solution]closedlooptransferfunctionis:Thecharacteristicequationis:AnimportanteffectoftheRouth-Hurwitzcriterionistoanalyzetheinfluenceofsomesystemparametersvaryingsuchastheopen-loopsystemamplifyingcoefficientK.Wecanusethecriteriontodeterminethemaximum–criticalamplifyingcoefficient.第三十二页,共四十四页,编辑于2023年,星期四TowriteouttheRoutharrayasbelow:Accordingtothenecessaryandsufficientcondition:①allthecoefficientsmustbebiggerthan0.②theelementslainonthefirstcolumnoftheRoutharrayshouldbepositive.Thenwemayget:Thecriticalamplifyingcoefficientis.Thecharacteristicequationis:第三十三页,共四十四页,编辑于2023年,星期四3)Todeterminetherelativesystemstability(stabilizationabundance)Asweknow,wecanusetheRouth-Hurwitzcriteriontodeterminewhetheracontrolsystemisstableorunstable.Itisaabsolutestability.ifwewanttoknowtherelativestabilityofacontrolsystem,orhowcanitbedetermined?Usually,thedistancebetweenthecharacteristicrootpofthemaximumrealpartandtheimaginaryaxisisusedvirtuallytoexpressthesystemstabilizationabundance.Clearly,ifpislainontheimaginaryaxis,,thatmeansthesystemstabilizationabundanceis0.Howdowedeterminethesystemstabilizationabundance?第三十四页,共四十四页,编辑于2023年,星期四Todrawaverticallineonthecomplexplaneswhichisparalleltotheimaginaryaxis,andifallthecharacteristicrootsareontheleftoftheline,thesystemiscalledofstabilizationabundance.Thebiggertheis,themorestablethesystemis.Problem:Howtofindtheinacontrolsystem?①Let,andsubstitutethecomplexvariableswithinthecharacteristicequation,thenleadanewcharacteristicequationwithanewcomplexvariablez.②UseRouth-Hurwitzcriteriontoanalyzethesystemstabilityaccordingtothenewcharacteristicequation.③Ifthenewsystemisstable,theoriginalsystemiscalledofstabilizationabundance.第三十五页,共四十四页,编辑于2023年,星期四[example]asystemcharacteristicequationis,Thereisapairofimaginaryroots.Thenewsystemiscriticalstable.Andtheoriginalsystemisof1abundancestability.Howabouttherelativesystemstability?[solution]clearly,AndThesystemisstable.Let,substitutetheswithz-1,thenewequationis:or第三十六页,共四十四页,编辑于2023年,星期四Usually,therealpartofthecogentcomplexrootrepresentstheattenuationspeedofsystemresponse,whereastheimaginarypartofthecogentcomplexrootrepresentstheoscillatingofsystemresponse.istheanglebetweenthepolarandthenegativerealaxis.Thesmallertheangleis,thebetterthesystemqualityis.Anotherformtodiscusstherelativestability,therelativestabilityisworst.第三十七页,共四十四页,编辑于2023年,星期四3.Essentialunstablesystemandtheplantoimprove1)Whatistheessentialunstablesystem?Itisthesystemwhoseperformancecannotbeimprovedjustbyadjustingthesystemparameters.结构不稳定系统及其改进措施-杠杆和放大器的传递函数执行电机的传递函数进水阀门的传递函数控制对象水箱的传递函数2)Example:liquidheightcontrolsystem第三十八页,共四十四页,编辑于2023年,星期四结构不稳定系统及其改进措施Closedlooptransferfunction:let:Characteristicequation:or:clearly:Routharray:Nomatterhowtochangeth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国深圳绿色能源研发协议
- 2025年音乐教育与社会实践考试试卷及答案
- 2025年行政管理专业期中考试题及答案
- 2025年现代地理信息技术考试卷及答案
- 2025年食品科学基础知识考试试题及答案
- 2025年社会服务与发展专业综合素质评价试卷及答案
- 2025年人工智能开发工程师资格考试模拟试卷及答案
- 2025年老年医学与健康管理考研复习试卷及答案
- 2025年历史学研究生入学考试试题及答案
- 2025年环境科学与工程专业综合素质测试试卷及答案
- 国有资产委托经营管理协议
- 2023年江西南昌轨道交通集团运营分公司招聘327人笔试参考题库(共500题)答案详解版
- 紫罗兰永恒花园
- 几种常用潜流人工湿地剖面图
- 先进成图技术教与学智慧树知到课后章节答案2023年下青岛滨海学院
- 二年级下册数学应用题(解决问题)课件
- 人教版四年级数学下册期末试卷(附答案)
- 提货申请单表
- 做自己人生的设计师 课件-2022-2023学年高一下学期职业生涯规划主题教育班会
- DB31∕T 1249-2020 医疗废物卫生管理规范
- 五年级上册英语人教PEP版课件Unit 1
评论
0/150
提交评论