版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区柳州市柳州高级中学2024届数学高二上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线的离心率为()A. B.C. D.2.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.3.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列4.二项式的展开式中,各项二项式系数的和是()A.2 B.8C.16 D.325.若圆与圆有且仅有一条公切线,则()A.-23 B.-3C.-12 D.-136.命题:“,”的否定是()A., B.,C., D.,7.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石8.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.29.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值10.若点在椭圆上,则该椭圆的离心率为()A. B.C. D.11.现从名男医生和名女医生中抽取两人加入“援鄂医疗队”,用表示事件“抽到的两名医生性别相同”,表示事件“抽到的两名医生都是女医生”,则()A. B.C. D.12.已知命题p:,,则命题p的否定为()A., B.,C, D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的左右焦点分别为,为椭圆上的一点,与椭圆交于.若△的内切圆与线段在其中点处相切,与切于,则椭圆的离心率为_______14.已知等比数列中,则q=___15.经过两点的直线的倾斜角为,则___________.16.已知三个数2,,6成等比数列,则实数______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程18.(12分)设数列的前n项和为,且满足.(1)证明为等比数列,并求数列通项公式;(2)在(1)的条件下,设,求数列的前项和.19.(12分)已知函数,.(1)若在单调递增,求的取值范围;(2)若,求证:.20.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.21.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.22.(10分)如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由曲线方程直接求离心率即可.【题目详解】由题设,,,∴离心率.故选:C.2、D【解题分析】根据求解即可.【题目详解】因为等比数列,,所以.故选:D3、C【解题分析】根据文化知识,分别求出相对应的频率,即可判断出结果【题目详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【题目点拨】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题4、D【解题分析】根据给定条件利用二项式系数的性质直接计算作答.【题目详解】二项式的展开式的各项二项式系数的和是.故选:D5、A【解题分析】根据两圆有且仅有一条公切线,得到两圆内切,从而可求出结果.【题目详解】因为圆,圆心为,半径为;圆可化为,圆心为,半径,又圆与圆有且仅有一条公切线,所以两圆内切,因此,即,解得.故选:A.6、D【解题分析】利用全称量词命题的否定可得出结论.【题目详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.7、D【解题分析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【题目详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.8、B【解题分析】先求出,再利用焦半径公式即可获解.【题目详解】由题意,,解得所以故选:B.9、D【解题分析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减10、C【解题分析】根据给定条件求出即可计算椭圆的离心率.【题目详解】因点在椭圆,则,解得,而椭圆长半轴长,所以椭圆离心率.故选:C11、A【解题分析】先求出抽到的两名医生性别相同的事件的概率,再求抽到的两名医生都是女医生事件的概率,然后代入条件概率公式即可【题目详解】解:由已知得,,则,故选:A【题目点拨】此题考查条件概率问题,属于基础题12、A【解题分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【题目详解】因为命题p:,,故命题p的否定为:,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】利用椭圆及三角形内切圆的性质可得、,结合等边三角形的性质得的大小,在△中应用余弦定理得到a、c的齐次式,即可求离心率.【题目详解】由题意知:由内切圆的性质得:,由椭圆的性质,而,∴,∴由内切圆的性质得:再由椭圆的性质,得:,由此,△为等边三角形,可得,在△中,由余弦定理得:,解得,则,故答案为:.14、3【解题分析】根据等比数列的性质求得,再根据等比数列的通项公式求得答案.【题目详解】等比数列中,故,,所以,故答案为:315、2【解题分析】由两点间的斜率公式及直线斜率的定义即可求解.【题目详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.16、【解题分析】由题意可得,从而可求出的值【题目详解】因为三个数2,,6成等比数列,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)面积的最小值为,此时直线的方程为.【解题分析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.18、(1)证明见解析,;(2).【解题分析】(1)利用与的关系求数列的递推关系,即得证明结论,并根据等比数列求通项公式;(2)根据(1)的结果求出,再分和,求.【题目详解】(1)当时,,,当时,,与已知式作差得,即,又,∴,∴,故数列是以为首项,2为公比的等比数列,所以(2)由(1)知,∴,若,,若,,∴.【题目点拨】关键点点睛:本题的关键是第二问弄清楚数列与的前项和的关系,在分段求数列的前项和.19、(1);(2)证明见解析.【解题分析】(1)由函数在上单调递增,则在上恒成立,由求解.(2)由(1)的结论,取,有,即在上恒成立,然后令,有求解.【题目详解】(1)因为函数在上单调递增,所以在上恒成立,则有在上恒成立,即.令函数,,所以时,,在上单调递增,所以,所以有,即,因此.(2)由(1)可知当时,为增函数,不妨取,则有在上单调递增,所以,即有在上恒成立,令,则有,所以,所以,因此.【题目点拨】方法点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到20、(1)证明见解析;(2)证明见解析.【解题分析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【题目详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.21、(1);(2).【解题分析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为22、(1)证明见解析;(2).【解题分析】(1)取的中点F,连接.先证明,,即证平面,原题即得证;(2)分别取的中点G,H,连接,证明为直线与平面所成的角,设正方形的边长为1,,在中,,即得解.【小问1详解】解:取的中点F,连接因为,则为正三角形,所以因为平面平面,则平面因为平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年牛津深圳中考英语语法专项练习定语从句和宾语从句
- 吉首大学《教学技能训练1》2021-2022学年第一学期期末试卷
- 吉首大学《抽样技术与应用》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷23
- 吉林艺术学院《艺用人体解剖学》2021-2022学年第一学期期末试卷
- 吉林艺术学院《三维软件MAYA》2021-2022学年第一学期期末试卷
- 集体经济房屋分配协议书范本
- 协议书范文伪装通知书的效力
- 吉林师范大学《原动画技法》2021-2022学年第一学期期末试卷
- 城市拍档协议书范文范本
- 青岛市市政工程安全文明施工管理标准
- iso20000信息技术服务目录
- 五一劳模励志演讲会教育PPT课程课件
- 小学二年级阅读练习(课堂PPT)
- 社保局社会保险经办风险管理自查报告
- 苏教版数学二年级上册易错题汇总
- GB31644-2018食品安全国家标准复合调味料
- 藏外佛教文献W06n0055 大黑天神道场仪
- 小学四年级上册数学综合实践活动计划
- 第七章气相色谱法PPT课件
- 金蝶ERP流程图
评论
0/150
提交评论