2024届安徽定远高复学校高二上数学期末教学质量检测试题含解析_第1页
2024届安徽定远高复学校高二上数学期末教学质量检测试题含解析_第2页
2024届安徽定远高复学校高二上数学期末教学质量检测试题含解析_第3页
2024届安徽定远高复学校高二上数学期末教学质量检测试题含解析_第4页
2024届安徽定远高复学校高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽定远高复学校高二上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在处的切线方程为()A. B.C. D.2.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.3.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.4.某四面体的三视图如图所示,该四面体的体积为()A. B.C. D.5.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得6.一部影片在4个单位轮流放映,每个单位放映一场,不同的放映次序有()A.种 B.4种C.种 D.种7.一质点的运动方程为(位移单位:m,时间单位:s),则该质点在时的瞬时速度为()A.4 B.12C.15 D.218.我国古代数学名著《算法统宗》是明代数学家程大位(1533-1606年)所著.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”.其意思是:“一座7层塔共挂了381盏灯,且下一层灯数是上一层的2倍,则可得塔的最顶层共有灯几盏?”.若改为“求塔的最底层几盏灯?”,则最底层有()盏.A.192 B.128C.3 D.19.已知命题,;命题,,那么下列命题为假命题的是()A. B.C. D.10.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]11.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于12.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P在圆上,已知,,则的最小值为___________.14.设命题:,,则为______.15.过点且与直线垂直的直线方程为______16.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.18.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围19.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)20.(12分)已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.21.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和22.(10分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】利用导数的几何意义即可求切线方程﹒【题目详解】,,,,在处的切线为:,即﹒故选:C﹒2、B【解题分析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【题目详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【题目点拨】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题3、B【解题分析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【题目详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.4、A【解题分析】可由三视图还原原几何体,然后根据题意的边角关系,完成体积的求解.【题目详解】由三视图还原原几何体如图:其中平面,,则该四面体的体积为.故选:A.5、B【解题分析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【题目详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B6、C【解题分析】根据题意得到一部影片在4个单位轮流放映,相当于四个单位进行全排列,即可得到答案.【题目详解】一部影片在4个单位轮流放映,相当于四个单位进行全排列,所以不同的放映次序有种,故选:C7、B【解题分析】由瞬时变化率的定义,代入公式求解计算.【题目详解】由题意,该质点在时的瞬时速度为.故选:B8、A【解题分析】根据题意,转化为等比数列,利用通项公式和求和公式进行求解.【题目详解】设这个塔顶层有盏灯,则问题等价于一个首项为,公比为2的等比数列的前7项和为381,所以,解得,所以这个塔的最底层有盏灯.故选:A.9、B【解题分析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【题目详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B10、B【解题分析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【题目详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【题目点拨】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.11、D【解题分析】由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论12、D【解题分析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【题目详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】推导出极化恒等式,即,结合最小值为,求出最小值.【题目详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:14、,【解题分析】由全称命题的否定即可得到答案【题目详解】根据全称命题的否定,可得为,【题目点拨】本题考查了含有量词的命题否定,属于基础题15、【解题分析】先设出与直线垂直的直线方程,再把代入进行求解.【题目详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:16、【解题分析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)在中,由正弦定理知可知,利用三角形内角和可知即,又因为,再根据面面垂直的判定定理,即可证明结果;(2)取BC中点O,由(1)得:平面BCGF,,以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用空间向量求二面角,即可求出结果.【小问1详解】证明:(1)在中,由正弦定理知:解得因为,所以又因为,所以所以又因为,所以直线平面ABC又因为平面BCGF所以平面平面BCGF【小问2详解】解:取BC中点O,连结OA,OH,由(1)得:平面BCGF,则以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系在中,则,,平面ABC的一个法向量为设平面ACH的一个法向量为因为,所以,取,则设平面APD与平面PDF夹角为,所以.18、(1);(2)【解题分析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【题目详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【题目点拨】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围19、(1)(2)【解题分析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;20、(1)(2)【解题分析】(1)由等差数列的性质结合内角和定理得出A的大小;(2)先由余弦定理,结合,,得到的关系式,再由的面积为,得到的关系式,两式联立可求出,进而可确定结果.【小问1详解】因为B,A,C成等差数列,所以,所以.【小问2详解】因为,,由余弦定理可得:;又的面积为,所以,所以,所以,所以周长为.21、(1);(2).【解题分析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论