江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析_第1页
江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析_第2页
江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析_第3页
江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析_第4页
江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市八都中学2021年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是() A. 若l⊥α,α⊥β,则l?β B. 若l∥α,α∥β,则l?β C. 若l⊥α,α∥β,则l⊥β D. 若l∥α,α⊥β,则l⊥β参考答案:C考点: 空间中直线与平面之间的位置关系.专题: 空间位置关系与距离.分析: 本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解答: 若l⊥α,α⊥β,则l?β或l∥β,故A错误;若l∥α,α∥β,则l?β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C点评: 判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性质定理(α∥β,a?α?a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α?a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.2.要得到函数的图象,只需将函数的图象沿轴A.向左平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向右平移个长度单位参考答案:A略3.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知,,则cosA=(

)A.

B.

C.

D.参考答案:A在△ABC中,∵b?c=a,2sinB=3sinC,利用正弦定理可得2b=3c,求得a=2c,b=c.再由余弦定理可得.本题选择A选项.

4.已知点,,若圆上存在不同的两点,使得,且,则m的取值范围是(

)A. B.C. D.参考答案:A【分析】结合题意将其转化为圆和圆的位置关系,两圆相交,计算出圆心距,然后求出结果.【详解】依题意可得,以为直径的圆与圆相交,则圆心距,解得.故选【点睛】本题考查了圆与圆的位置关系,在解答过程中要先读懂题目的意思,将其转化为圆与圆的位置关系,本题还需要一定的计算量,属于中档题.5.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7,8},则=()A.{5,7}

B.{2,4}

C.{2,4,8}

D.{1,3,5,6,7}参考答案:B6.已知函数,则(

)A.必是偶函数

B.当时,的图象关于直线对称C.若,则在区间上是增函数

D.有最大值参考答案:C略7.函数的最小值等于(

)A.

B.

C.

D.参考答案:C

解析:8.设函数,则的表达式是(

)A.

B.

C.

D.参考答案:B

∵∴;

9.数列{an}为等比数列,且,公比,则(

)A.2

B.4

C.8

D.16参考答案:B,故选B。10.在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是()A.A1C1⊥AD B.D1C1⊥ABC.AC1与DC成45°角 D.A1C1与B1C成60°角参考答案:D【考点】异面直线及其所成的角;棱柱的结构特征.【分析】由题意画出正方体的图形,结合选项进行分析即可.【解答】解:由题意画出如下图形:A.因为AD∥A1D1,所以∠C1A1D1即为异面直线A1C1与AD所成的角,而∠C1A1D1=45°,所以A错;B.因为D1C1∥CD,利平行公理4可以知道:AB∥CD∥C1D1,所以B错;C.因为DC∥AB.所以∠C1AB即为这两异面直线所成的角,而,所以C错;D.因为A1C1∥AC,所以∠B1CA即为异面直线A1C1与B1C所成的角,在正三角形△B1CA中,∠B1CA=60°,所以D正确.故选:D.【点评】此题考查了正方体的特征,还考查了异面直线的夹角的定义即找异面直线所成的角往往平移直线然后把角放入同一个平面内利用三角形求解.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,当时,则函数的最大值为_________________.参考答案:612.不等式log0.2(x-1)≤log0.22的解集是______________.参考答案:{x|x≥3}略13.若,则=

.

参考答案:略14.(5分)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=

.参考答案:18考点: 平面向量数量积的运算.专题: 计算题;压轴题.分析: 设AC与BD交于O,则AC=2AO,在RtAPO中,由三角函数可得AO与AP的关系,代入向量的数量积=||||cos∠PAO可求解答: 设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:18点评: 本题主要考查了向量的数量积的定义的应用,解题的关键在于发现规律:AC×cos∠OAP=2×AOcos∠OAP=2AP.15.甲船在点A处测得乙船在北偏东60°的B处,并以每小时10海里的速度向正北方向行使,若甲船沿北偏东30°角方向直线航行,并1小时后与乙船在C处相遇,则甲船的航速为海里/小时.参考答案:10【考点】HU:解三角形的实际应用.【分析】设甲船的航速为v海里/小时,则AC=v,BC=10,∠CAB=30°,∠ABC=120°,由正弦定理可得甲船的航速.【解答】解:设甲船的航速为v海里/小时,则AC=v,BC=10,∠CAB=30°,∠ABC=120°,由正弦定理可得,∴v=10海里/小时.故答案为10.16.已知,,,,且∥,则=

.参考答案:【详解】因为,,,由∥知,属于,.考点:平行向量间的坐标关系.17.函数

的值域是

参考答案:y∈{-1,0,1,2}三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在锐角三角形中,边a、b是方程x2﹣2x+2=0的两根,角A、B满足:2sin(A+B)﹣=0,求角C的度数,边c的长度及△ABC的面积.参考答案:【考点】HX:解三角形;HT:三角形中的几何计算.【分析】由2sin(A+B)﹣=0,得到sin(A+B)的值,根据锐角三角形即可求出A+B的度数,进而求出角C的度数,然后由韦达定理,根据已知的方程求出a+b及ab的值,利用余弦定理表示出c2,把cosC的值代入变形后,将a+b及ab的值代入,开方即可求出c的值,利用三角形的面积公式表示出△ABC的面积,把ab及sinC的值代入即可求出值.【解答】解:由2sin(A+B)﹣=0,得sin(A+B)=,∵△ABC为锐角三角形,∴A+B=120°,C=60°.又∵a、b是方程x2﹣2x+2=0的两根,∴a+b=2,a?b=2,∴c2=a2+b2﹣2a?bcosC=(a+b)2﹣3ab=12﹣6=6,∴c=,S△ABC=absinC=×2×=.19.设为定义在R上的偶函数,当时,;当x>2时,=的图像是顶点在P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数在上的解析式;(2)在所给的直角坐标系中直接画出函数=的图像;(3)写出函数值域.参考答案:解:(1)当时,设

………2分由=的图像过A,得:∴时解析式为……4分

(2)图像如右图所示

………4分(3)值域为:

………4分20.已知向量=(1,sinα),=(2,cosα),且∥,计算:.参考答案:【考点】平面向量共线(平行)的坐标表示;同角三角函数基本关系的运用.【专题】定义法;三角函数的求值;平面向量及应用.【分析】根据向量平行建立方程关系,代入进行化简即可.【解答】解:∵∥,∴2sinα﹣cosα=0,即cosα=2sinα,则===﹣5.【点评】本题主要考查三角函数式的化简和求值,根据向量共线的等价条件进行等量代换是解决本题的关键.比较基础.21.(本题满分12分)本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

参考答案:解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得

目标函数为.

………5分

二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域.

…………8分

如图:作直线,即.

平移直线,从图中可知,当直线过点时,目标函数取得最大值.

联立解得.点的坐标为.

………………10分

(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.

…12分22.(13分)如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴运动.(Ⅰ)当平面ADB⊥平面ABC时,求CD;(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.参考答案:考点: 平面与平面垂直的性质.专题: 计算题;证明题.分析: (Ⅰ)取出AB中点E,连接DE,CE,由等边三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD.(Ⅱ)总有AB⊥CD,当D∈面ABC内时,显然有AB⊥CD,当D在而ABC外时,可证得AB⊥平面CDE,定有AB⊥CD.解答: (Ⅰ)取AB的中点E,连接DE,CE,因为ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,[来源:学|科|网Z|X|X|K]所以DE⊥平面AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论