湖南省益阳市关山口中学高一数学理模拟试题含解析_第1页
湖南省益阳市关山口中学高一数学理模拟试题含解析_第2页
湖南省益阳市关山口中学高一数学理模拟试题含解析_第3页
湖南省益阳市关山口中学高一数学理模拟试题含解析_第4页
湖南省益阳市关山口中学高一数学理模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省益阳市关山口中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.与直线关于x轴对称的直线方程为(

)A. B.C. D.参考答案:A【分析】设对称直线上的点为,求它关于轴的对称点并代入已知直线的方程,所得方程即为所求的直线方程.【详解】设对称直线上的点为,则其关于轴的对称点在直线上,所以即,选A.【点睛】若直线,那么关于轴的对称直线的方程为,关于轴的对称直线的方程为,关于直线对称的直线的方程.2.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数1020304050销售额/天(万元)62758189

根据上表提供的数据,求得y关于x的线性回归方程为,由于表中有一个数据模糊看不清,请你推断出该数据的值为(

)A.68 B.68.3 C.71 D.71.3参考答案:A【分析】根据表中数据计算,再代入线性回归方程求得,进而根据平均数的定义求出所求的数据.【详解】根据表中数据,可得,代入线性回归方程中,求得,则表中模糊不清的数据是,故选:B.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.3.设全集为,集合,则等于(

)(A)

(B)

(C)

(D)参考答案:B4.已知集合,集合满足,则可能的集合共有()A.4个 B.7个 C.8个 D.9个参考答案:C5.若函数是偶函数,则函数的单调递增区间为(

)A.

B.

C.

D.参考答案:A略6.已知三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球的半径为()A.3 B.6 C.36 D.9参考答案:A【考点】球内接多面体;棱锥的结构特征;球的体积和表面积.【分析】三棱锥扩展为四棱柱(长方体),两个几何体的外接球是同一个球,求出四棱锥的对角线的长度就是外接球的直径,即可求解半径.【解答】解:三棱锥S﹣ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,则该三棱锥的外接球,就是三棱锥扩展为长方体的外接球,所以长方体的对角线的长度为:=6,所以该三棱锥的外接球的半径为:3.故选A.7.过点和的直线与直线平行,则的值为

A.

B.

C.

D.参考答案:A8.对于任意的,不等式恒成立,则的取值范围是(

)A.

B.

C.

D.或参考答案:B略9.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为增函数,则m的值为()A.1或3 B.1 C.3 D.2参考答案:B【考点】幂函数的概念、解析式、定义域、值域.【分析】根据幂函数的定义与性质,得出关于m的不等式组,求出m的取值范围即可.【解答】解:幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为增函数,∴,解得,所以m的值为1.故选:B.10.下列式子中成立的是A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.cos=

.参考答案:略12.如图所示,三棱锥P-ABC的高PO=8,AC=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N-AMC的体积V与x的变化关系,其中正确的是()

参考答案:A略13.在等差数列{an}中,a2+a4=4,a3+a5=10,则该数列的公差为

.参考答案:3略14.已知函数在区间[-2,4]上具有单调性,则k的取值范围是________.参考答案:.【分析】函数对称轴为:,函数在区间,上有单调性,由或,解得即可.【详解】函数对称轴,又函数在区间上有单调性,或,或,故答案为:.【点睛】此题主要考查二次函数的图象及其性质,利用对称轴在区间上移动得出,在其区间上具有单调性的条件,属于容易题.15.若集合,则

.参考答案:16.甲,乙两船同时从点出发,甲以每小时的速度向正东航行,乙船以每小时的速度沿南偏东的方向航行,小时后,甲、乙两船分别到达两点,此时的大小为

;参考答案:17.正数a、b满足,若不等式对任意实数恒成立,则实数m的取值范围_____.参考答案:【分析】由已知先求出,得对任意实数恒成立,又由在时,,可得实数的取值范围.【详解】因为,所以,所以对任意实数恒成立,即对任意实数恒成立,又因为在时,,所以,故填:.【点睛】本题考查不等式恒成立问题,关键在于对运用参变分离,与相应的函数的最值建立不等关系,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)当时,若,求函数f(x)的值;(2)当时,求函数的值域;(3)把函数y=f(x)的图象按向量平移得到函数g(x)的图象,若函数g(x)是偶函数,写出最小的向量的坐标.参考答案:考点: 三角函数的最值;三角函数的恒等变换及化简求值;同角三角函数间的基本关系;正弦函数的定义域和值域.专题: 计算题.分析: (1)利用同角三角函数的基本关系由sinx求出cosx,从而求得f(x)的值.(2)根据x的范围,求得角x﹣的范围,可得sin(x﹣)的范围,利用两角差的正弦公式化简f(x)的解析式,利用二次函数的性质求的h(x)的值域.(3)根据向量平移得到g(x)的解析式,要使g(x)是偶函数,即要,求得a的解析式,通过|的解析式可得当k=﹣1时,最小.解答: (1)∵,∴,==.(2)∵,∴,,=.(3)设,所以,要使g(x)是偶函数,即要,即,,当k=﹣1时,最小,此时,b=0,即向量的坐标为.点评: 本题考查同角三角函数的基本关系,两角差的正弦公式,正弦函数的定义域和值域,判断g(x)是偶函数的条件,是解题的难点.19.已知函数y=x+,(a>0),(1)判断函数的奇偶性;(2)求证:f(x)在区间上是增函数;(3)若a=4时,求该函数在区间[1,5]上的值域.参考答案:【考点】奇偶性与单调性的综合.【专题】方程思想;转化思想;定义法;函数的性质及应用.【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性;(2)利用函数单调性的定义即可证明f(x)在区间上是增函数;(3)若a=4时,结合函数单调性的性质即可求该函数在区间[1,5]上的值域.【解答】解:(1)函数的定义域为(﹣∞,0)∪(0,+∞),则f(﹣x)=﹣x﹣=﹣(x+)=﹣f(x),则函数f(x)为奇函数;(2)证明:设x1<x2<﹣,则f(x1)﹣f(x2)=x1+﹣x2﹣=(x1﹣x2)+=(x1﹣x2)?,∵x1<x2<﹣,∴x1﹣x2<0,x1x2>﹣(﹣)=a>0,即x1x2﹣a>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),即f(x)在区间上是增函数;(3)若a=4时,则f(x)=x+,则函数f(x)在[1,2]上为减函数,则[2,5]上为增函数,则函数的最小值为f(2)=2+=2+2=4,∵f(1)=1+4=5,f(5)=5+=,∴最大值为f(5)=,则函数在区间[1,5]上的值域为[4,].【点评】本题主要考查函数奇偶性,单调性的判断和应用,利用定义法是解决本题的关键.20.某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本万元,生产与销售均已百台计数,且每生产台,还需增加可变成本万元,若市场对该产品的年需求量为台,每生产百台的实际销售收入近似满足函数.()试写出第一年的销售利润(万元)关于年产量(单位:百台,,)的函数关系式:(说明:销售利润=实际销售收入-成本)()因技术等原因,第一年的年生产量不能超过台,若第一年的年支出费用(万元)与年产量(百台)的关系满足,问年产量为多少百台时,工厂所得纯利润最大?参考答案:见解析()由题意可得,,即,.()设工厂所得纯利润为,则.∴当时,函数取得最大值.当年产量为百台时,工厂所得纯利润最大,最大利润为万元.21.(本题满分10分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)(2)(3)(4)(5)Ⅰ试从上述五个式子中选择一个,求出这个常数Ⅱ根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.参考答案:解:(1)选择(2)式计算如下

……4分

(2)

ks5u证明:

…10分略22.如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为ts,若⊙P与⊙O相切,求t的值.参考答案:解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论