版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年安徽省阜阳市新集中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数在处存在导数,则(
)A. B. C. D.参考答案:A【分析】利用在某点处的导数的定义来求解.【详解】,故选A.【点睛】本题主要考查在某点处导数的定义,一般是通过构造定义形式来解决,侧重考查数学建模和数学运算的核心素养.2.下列表述正确的是(
)①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.②③④
B.①③⑤
C.②④⑤
D.①⑤参考答案:B考点:归纳推理;演绎推理的意义3.用数学归纳法证明多边形内角和定理时,第一步应验证(
)A.成立 B.成立
C.成立
D.成立参考答案:C4.如图是某四面体ABCD水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD外接球的表面积为()A.20π B. C.25π D.100π参考答案:C【考点】由三视图求面积、体积.【分析】还原三视图成直观图,得到如图所示的三棱锥P﹣ABC,其中AC⊥BC,PA⊥平面ABC,AB=BC=2且PA=3.利用线面垂直的判定与性质,证出PB是Rt△PAB与Rt△PBC公共的斜边,从而得到PB的中点O就是多面体的外接球的球心.再根据勾股定理和球的表面积公式加以计算,可得答案.【解答】解:根据三视图的形状,将该多面体还原成直观图,得到如图所示的三棱锥P﹣ABC.其中△ABC中,AC=4,AB=BC=2,PA⊥平面ABC,PA=3∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC.∵BC⊥AC,PA∩AC=C,∴BC⊥平面PAC结合PC?平面PAC,得BC⊥PC因此,PB是Rt△PAB与Rt△PBC公共的斜边,设PB的中点为0,则OA=OB=OC=OP=PB.∴PB的中点O就是多面体的外接球的球心∵Rt△ABC中,AC⊥BC,AC=BC=2,∴AB=2.又∵Rt△PAB中,PA=3,∴PB==,所以外接球表面积为S=4πR2=25π.故选:C.【点评】本题给出三视图,求多面体的外接球的表面积.着重考查了三视图的认识、线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.5.已知,且是纯虚数,则=()A.
B.
C.
D.参考答案:B6.在△ABC中,角A、B、C所对的边分别为a,b,c.若c=2,,且a+b=3则△ABC的面积为()A. B. C. D.参考答案:D【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知及余弦定理可解得ab的值,利用三角形面积公式即可得解.【解答】解:∵c=2,,a+b=3,∴由余弦定理:c2=a2+b2﹣2abcosC,可得:4=a2+b2﹣ab=(a+b)2﹣3ab=9﹣3ab,∴解得:ab=,∴S△ABC=absinC==.故选:D.【点评】本题主要考查了余弦定理,三角形面积公式的应用,属于基础题.7.已知函数,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为(
) A. B. C. D.参考答案:D考点:古典概型及其概率计算公式.专题:计算题;概率与统计.分析:由极值的知识结合二次函数可得a>b,由分步计数原理可得总的方法种数,列举可得满足题意的事件个数,由概率公式可得.解答: 解:求导数可得f′(x)=x2+2ax+b2,要满足题意需x2+2ax+b2=0有两不等实根,即△=4(a2﹣b2)>0,即a>b,又a,b的取法共3×3=9种,其中满足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6种,故所求的概率为P=故选D点评:本题考查古典概型及其概率公式,涉及函数的极值问题,属基础题.8.在数列中,=1,,则的值为
(
)A.99
B.49
C.102
D.101参考答案:D9.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.10.三角形ABC周长等于20,面积等于,则为
(
)A.5
B.7
C.6
D.8
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设函数,若是奇函数,则+的值为参考答案:略12.(5分)直线y=x﹣4的倾斜角为_________.参考答案:45°13.双曲线C:x2﹣4y2=1的渐近线方程是
,双曲线C的离心率是.参考答案:y=±x;
【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,c,即可得到所求渐近线方程和离心率.【解答】解:双曲线C:x2﹣4y2=1,即为﹣=1,可得a=1,b=,c==,可得渐近线方程为y=±x;离心率e==.故答案为:y=±x;.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,属于基础题.14.点O在内部且满足,则的面积与凹四边形.的面积之比为________.参考答案:5:4作图如下作向量=2,以、为邻边作平行四边形ODEF,根据平行四边形法则可知:+=即2+2=由已知2+2==-,所以=-,BC是中位线,则OE=2OG=4OH,则线段OA、OH的长度之比为4:1,从而AH、OH的长度之比为5:1,所以△ABC与△OBC都以BC为底,对应高之比为5:1,所以△ABC与△OBC的面积比为5:1,∴三角形ABC的面积与凹四边形ABOC面积之比是5:4
15.过抛物线的焦点F的直线交抛物线于A,B两点,若(O为坐标原点),则
.参考答案:5过B引准线的垂线,垂足为N,连接AN,易知:A、O、N三点共线,∴,即故答案为:5
16.在极坐标系中,已知圆C的圆心为C(2,),半径为1,求圆C的极坐标方程.参考答案:解:在圆C上任意取一点P(ρ,θ),在△POC中,由余弦定理可得CP2=OC2+OP2﹣2OC?OP?cos∠POC,即1=4+ρ2﹣2×2×ρcos(θ﹣),化简可得ρ2﹣4ρcos(θ﹣)+3=0.当O、P、C共线时,此方程也成立,故圆C的极坐标方程为ρ2﹣4ρcos(θ﹣)+3=0.略17.点为定点,点是抛物线的焦点,点在抛物线上移动,若取得最小值,则点的坐标为
。参考答案:(1,2)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分,第1问4分,第2问6分)已知
(1)求;
(2)当为何实数时,与平行,平行时它们是同向还是反向?参考答案:解:(1),………………2分∴==.……………4分(2),…………5分设,即…………7分∴
.………………9分故时,它们反向平行。……………10分
略19.已知双曲线的左、右焦点分别为F1、F2,点P在双曲线上,且PF2⊥x轴,则F2到直线PF1的距离为.参考答案:略20.(文)已知在处有极值,其图象在处的切线与直线平行.(1)求函数的单调区间;(2)若时,恒成立,求实数的取值范围。参考答案:(文)解:(1)由题意:
直线的斜率为;
由已知
所以
-----------------3分所以由得心或;所以当时,函数单调递减;当时,函数单调递增。-----------------6分(2)由(1)知,函数在时单调递减,在时单调递增;所以函数在区间有最小值要使恒成立只需恒成立,所以。故的取值范围是{}
-----------------10分21.小明下班回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为,在第二、第三个道口遇到红灯的概率依次减小,在三个道口都没遇到红灯的概率为,在三个道口都遇到红灯的概率为,且他在各路口是否遇到红灯相互独立.(1)求小明下班回家途中至少有一个道口遇到红灯的概率;(2)求小明下班回家途中在第三个道口首次遇到红灯的概率;(3)记为小明下班回家途中遇到红灯的路口个数,求数学期望.参考答案:(1);(2);(3).【分析】(1)根据对立事件的概率关系结合已知,即可求解;(2)设第二、三个道口遇到红灯的概率分别为,根据已知列出关于方程组,求得,即可求出结论;(3)的可能值为分别求出概率,得出随机变量的分布列,由期望公式,即可求解.【详解】(1)因为小明在三个道口都没遇到红灯的概率为,所以小明下班回家途中至少有一个道口遇到红灯的概率为;(2)设第二、三个道口遇到红灯的概率分别为,依题意解得或(舍去),所以小明下班回家途中在第三个道口首次遇到红灯的概率;(3)的可能值为,,,,,分布列为
【点睛】本题考查互斥事件、对立事件概率关系,考查相互独立同时发生的概率,以及离散型随机变量分布列和期望,属于中档题.22.已知命题p:方程a2x2+ax﹣2=0在区间[0,1]上有解,命题q:对于?x∈R,不等式sinx+cosx>a恒成立.若命题p∨q为真命题,p∧q为假命题,求实数a的取值范围.参考答案:【考点】2E:复合命题的真假.【分析】分别求出命题p,q为真时,实数a的取值范围.结合命题p∨q为真命题,p∧q为假命题,可得答案.【解答】(本题满分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《环境微生物学》本科题集
- 九江-PEP-2024年小学三年级上册英语第四单元期末试卷
- DB5120T 22-2024 柠檬种植农业气象服务规范
- 广西来宾市兴宾区2023-2024学年七年级下学期期中考试英语试题(含答案)
- 勾股定理的综合探究题型(原卷版+解析)
- 2024年非标智能装备项目资金需求报告
- 氧化石墨烯粉体失重率测定 热重分析法-征求意见稿
- 2.5.1 三角函数的应用-仰俯角、方向角问题 同步练习
- 保育员技能培训试题及答案
- 酯油脂-2024年高中化学讲义(选择性必修三)
- 2024年车路云一体化系统建设与应用指南报告
- 2024年福建省托育服务职业技能竞赛理论考试题库(含答案)
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年(高频重点提升专题训练)共500题附带答案详解
- 一例登革热合并凝血功能障碍患者的个案护理20190-7
- 门诊病历书写模板全
- 《图形创意设计》PPT课件(完整版)
- 全国医疗服务价格项目规范(2012版)
- 二年级乘除法口算题大全500题(可直接打印)
- 高等医学院校临床教学基地设置条件与认定程序
- 七大浪费实战案例(消除企业中的浪费)
评论
0/150
提交评论