C6140普通车床主轴变速箱设计【4kw-1.26-150-1900-12级】_第1页
C6140普通车床主轴变速箱设计【4kw-1.26-150-1900-12级】_第2页
C6140普通车床主轴变速箱设计【4kw-1.26-150-1900-12级】_第3页
C6140普通车床主轴变速箱设计【4kw-1.26-150-1900-12级】_第4页
C6140普通车床主轴变速箱设计【4kw-1.26-150-1900-12级】_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录目录 2第1章绪论 5第2章车床转速参数设计 62.1车床主参数和基本参数 62.2确定转速 62.3拟定参数的步骤和方法 62.3.1极限切削速度Vmax、Vmin 62.3.2主轴的极限转速 6第3章运动设计 83.1主电机功率——动力参数的确定 83.2确定结构式 83.3确定结构网 93.4绘制转速图和传动系统图 93.5确定各变速组此论传动副齿数 103.6核算主轴转速误差 12第4章传动件的设计 134.1带传动设计 134.2选择带型 144.3确定带轮的基准直径并验证带速 144.4确定中心距离、带的基准长度并验算小轮包角 154.5确定带的根数z 164.6确定带轮的结构和尺寸 164.7确定带的张紧装置 164.8计算压轴力 164.9计算转速的计算 184.10齿轮模数计算及验算 194.11传动轴最小轴径的初定 244.12传动轴的直径估算 254.12.1确定各轴转速 254.12.2传动轴直径的估算:确定各轴最小直径 254.12.3键的选择 264.13传动轴的校核 264.13.1传动轴的校核 274.13.2键的校核 274.14摩擦离合器的选择和计算 284.15轴承的选用与校核 304.15.1各轴轴承的选用 304.15.2各轴轴承的校核 304.16主轴组件设计 334.17主轴的基本尺寸确定 334.18主轴刚度验算 37第5章结构设计 405.1结构设计的内容、技术要求和方案 405.2展开图及其布置 405.3I轴(输入轴)的设计 415.4齿轮块设计 415.5传动轴的设计 425.6主轴组件设计 445.6.1各部分尺寸的选择 445.6.2主轴材料和热处理 445.6.3主轴轴承 455.6.4主轴与齿轮的连接 465.6.5润滑与密封 475.6.6其他问题 47第6章设计部分的调节、润滑、维护保养、技术要求及其它 48总结 50参考文献 51致谢 52全套图纸加扣扣401339828课程设计(论文)PAGE53

第1章绪论机床技术参数有主参数和基本参数,他们是运动传动和结构设计的依据,影响到机床是否满足所需要的基本功能要求,参数拟定就是机床性能设计。主参数是直接反映机床的加工能力、决定和影响其他基本参数的依据,如车床的最大加工直径,一般在设计题目中给定,基本参数是一些加工件尺寸、机床结构、运动和动力特性有关的参数,可归纳为尺寸参数、运动参数和动力参数。通用车床工艺范围广,所加工的工件形状、尺寸和材料各不相同,有粗加工又有精加工;用硬质合金刀具又用高速钢刀具。因此,必须对所设计的机床工艺范围和使用情况做全面的调研和统计,依据某些典型工艺和加工对象,兼顾其他的可能工艺加工的要求,拟定机床技术参数,拟定参数时,要考虑机床发展趋势和同国内外同类机床的对比,使拟定的参数最大限度地适应各种不同的工艺要求和达到机床加工能力下经济合理。机床主传动系因机床的类型、性能、规格和尺寸等因素的不同,应满足的要求也不一样。设计机床主传动系时最基本的原则就是以最经济、合理的方式满足既定的要求。在设计时应结合具体机床进行具体分析,一般应满足的基本要求有:满足机床使用性能要求。首先应满足机床的运动特性,如机床主轴油足够的转速范围和转速级数;满足机床传递动力的要求。主电动机和传动机构能提供足够的功率和转矩,具有较高的传动效率;满足机床工作性能要求。主传动中所有零部件有足够的刚度、精度和抗震性,热变形特性稳定;满足产品的经济性要求。传动链尽可能简短,零件数目要少,以便节约材料,降低成本。第2章车床转速参数设计2.1车床主参数和基本参数车床的主参数(规格尺寸)和基本参数如下:Dmin=315、rmin=150r/min、P=4kw、公比1.26、Z=122.2确定转速这里我们取标准公比系列=1.26.查标准数列取因为=1.26=1.064。首先找到最小极限转速150,再每跳过3个数(1.06~1.064)取一个转速,即可得到公比为1.26的数列:150,190,236,300,375,475,600,750,950,1180,1500,19002.3拟定参数的步骤和方法2.3.1极限切削速度Vmax、Vmin根据典型的和可能的工艺选取极限切削速度要考虑:允许的切速极限参考值如下:表1.1加工条件Vmax(m/min)Vmin(m/min)硬质合金刀具粗加工铸铁工件30~50硬质合金刀具半精或精加工碳钢工件150~300螺纹加工和铰孔3~82.3.2主轴的极限转速计算车床主轴极限转速时的加工直径,则主轴极限转速应为结合题目条件,取标准数列数值,=150r/min取依据题目要求选级数Z=12,=1.26考虑到设计的结构复杂程度要适中,故采用常规的扩大传动。各级转速数列可直接从标准的数列表中查出,按标准转速数列为:150,190,236,300,375,475,600,750,950,1180,1500,1900第3章运动设计3.1主电机功率——动力参数的确定合理地确定电机功率N,使机床既能充分发挥其性能,满足生产需要,又不致使电机经常轻载而降低功率因素。根据题设条件电机功率为4KW可选取电机为:Y112M-4额定功率为4KW,满载转速为1440r/min.3.2确定结构式已知Z=x3ba、b为正整数,即Z应可以分解为2和3的因子,以便用2、3联滑移齿轮实现变速。按照Z=12分解为:Z=21×32×24。对于12=2×3×2传动式,有6种结构式和对应的结构网。分别为:,,,由于本次设计的机床=1\*ROMANI轴装有摩擦离合器,在结构上要求有一齿轮的齿根圆大于离合器的直径。初选的方案。从电动机到主轴主要为降速变速,若使变速副较多的变速组放在较接近电动机处可使小尺寸零件多些,大尺寸零件少些,节省材料,也就是满足变速副前多后少的原则,因此取12=2×3×2方案为好。设计车床主变速传动系时,为避免从动齿轮尺寸过大而增加箱体的径向尺寸,在降速变速中,一般限制限制最小变速比;为避免扩大传动误差,减少震动噪声,在升速时一般限制最大转速比。斜齿圆柱齿轮传动较平稳,可取。因此在主变速链任一变速组的最大变速范围。在设计时必须保证中间变速轴的变速范围最小。综合上述可得:主传动部件的运动参数=150Z=12=1.263.3确定结构网由上选择的结构式12=23×31×26画其结构图如下:传动组的变速范围的极限值齿轮传动最小传动比Umin1/4,最大传动比Umax,决定了一个传动组的最大变速范围rmax=umax/umin。因此,要按照下表,淘汰传动组变速范围超过极限值的所有传动方案。极限传动比及指数X,X,值为:表2.1公比极限传动比指数1.26X值:Umin==1/44X'值:Umax=x,=22(X+X')值:rmin=x+x`=863.4绘制转速图和传动系统图(1)选择电动机:采用Y系列封闭自扇冷式鼠笼型三相异步电动机。(2)绘制转速图:(3)画主传动系统图。根据系统转速图及已知的技术参数,画主传动系统图如图2-3:1-2轴最小中心距:A1_2min>1/2(Zmaxm+2m+D)轴最小齿数和:Szmin>(Zmax+2+D/m)3.5确定各变速组此论传动副齿数(1)Sz100-120,中型机床Sz=70-100(2)直齿圆柱齿轮Zmin18-20,m4图2-3主传动系统图(7)齿轮齿数的确定。变速组内取模数相等,据设计要求Zmin≥18~20,齿数和Sz≤100~120,由表4.1,根据各变速组公比,可得各传动比和齿轮齿数,各齿轮齿数如表2-2。表2-2齿轮齿数传动比基本组第一扩大组第二扩大组1.26:11:1.581:11:1.261:1.581:22:1代号ZZZZZZZZ’Z5Z5’ZZZ7Z7’齿数30242133404035453149336666333.6核算主轴转速误差实际传动比所造成的主轴转速误差,一般不应超过±10(-1)%,即〈10(-1)%=2.6%各级转速误差n190015001180950750600475375300236n`190215011182.1951.8751.5603.2475.8374.3303.5235.72误差2.2%2.1%2.2%2.1%2.1%2.3%1.31%2.2%2.2%2.1%n190150n`191150.1误差2.2%2.1%转速误差小于2.6%,因此不需要修改齿数。第4章传动件的设计4.1带传动设计输出功率P=4kW,转速n1=1440r/min,n2=750r/min计算设计功率Pd表4工作情况系数工作机原动机ⅰ类ⅱ类一天工作时间/h10~1610~16载荷平稳液体搅拌机;离心式水泵;通风机和鼓风机();离心式压缩机;轻型运输机1.01.21.3载荷变动小带式运输机(运送砂石、谷物),通风机();发电机;旋转式水泵;金属切削机床;剪床;压力机;印刷机;振动筛载荷变动较大螺旋式运输机;斗式上料机;往复式水泵和压缩机;锻锤;磨粉机;锯木机和木工机械;纺织机械载荷变动很大破碎机(旋转式、颚式等);球磨机;棒磨机;起重机;挖掘机;橡胶辊压机根据V带的载荷平稳,两班工作制(16小时),查《机械设计》P296表4,取KA=1.1。即4.2选择带型普通V带的带型根据传动的设计功率Pd和小带轮的转速n1按《机械设计》P297图13-11选取。根据算出的Pd=4.4kW及小带轮转速n1=1440r/min,查图得:dd=80~100可知应选取A型V带。4.3确定带轮的基准直径并验证带速由《机械设计》P298表13-7查得,小带轮基准直径为80~100mm则取dd1=90mm>ddmin.=75mm(dd1根据P295表3V带带轮最小基准直径槽型YZABCDE205075125200355500由《机械设计》P295表13-4查“V带轮的基准直径”,得=170mm误差验算传动比:(为弹性滑动率)误差符合要求②带速满足5m/s<v<25~30m/s的要求,故验算带速合适。4.4确定中心距离、带的基准长度并验算小轮包角由式可得0.7(90+170)2(90+170)即182520,选取=340mm所以有:由《机械设计》P293表13-2查得Ld=1实际中心距符合要求。表4.包角修正系数包角2202102001901801501701601401301201101009001.051.000.920.980.950.890.860.820.780.730.68表5.弯曲影响系数带型ZABCDE4.5确定带的根数z根据三角带根数式中:N1为—根三角带传动的功率,N0为单根三角带在、特定长度、平稳工作情况下传递的功率,查表得N0=2.70C1—包角系数,查表得C1=0.98三角带传递的功率N1=4KW将所查数据代入可得所以,所需带轮的根数为3根4.6确定带轮的结构和尺寸根据V带轮结构的选择条件,电机的主轴直径为d=28mm;由《机械设计》P293,“V带轮的结构”判断:当3d<dd1(90mm)<300mm,可采用H型孔板式或者P型辐板式带轮,这次选择H型孔板式作为小带轮。由于dd2>300mm,所以宜选用E型轮辐式带轮。总之,小带轮选H型孔板式结构,大带轮选择E型轮辐式结构。带轮的材料:选用灰铸铁,HT200。4.7确定带的张紧装置选用结构简单,调整方便的定期调整中心距的张紧装置。4.8计算压轴力由《机械设计》P303表13-12查得,A型带的初拉力F0=130.59N,上面已得到=153.36o,z=3,则对带轮的主要要求是质量小且分布均匀、工艺性好、与带接触的工作表面加工精度要高,以减少带的磨损。转速高时要进行动平衡,对于铸造和焊接带轮的内应力要小,带轮由轮缘、腹板(轮辐)和轮毂三部分组成。带轮的外圈环形部分称为轮缘,轮缘是带轮的工作部分,用以安装传动带,制有梯形轮槽。由于普通V带两侧面间的夹角是40°,为了适应V带在带轮上弯曲时截面变形而使楔角减小,故规定普通V带轮槽角为32°、34°、36°、38°(按带的型号及带轮直径确定),轮槽尺寸见表7-3。装在轴上的筒形部分称为轮毂,是带轮与轴的联接部分。中间部分称为轮幅(腹板),用来联接轮缘与轮毂成一整体。表普通V带轮的轮槽尺寸(摘自GB/T13575.1-92)项目

符号槽型YZABCDE基准宽度bp5.38.511.014.019.027.032.0基准线上槽深hamin1.62.02.753.54.88.19.6基准线下槽深hfmin4.77.08.710.814.319.923.4槽间距e8±0.312±0.315±0.319±0.425.5±0.537±0.644.5±0.7第一槽对称面至端面的距离fmin67911.5162328最小轮缘厚55.567.5101215带轮宽BB=(z-1)e+2f

z—轮槽数外径da轮槽角32°对应的基准直径dd≤60------34°-≤80≤118≤190≤315--36°60----≤475≤60038°->80>118>190>315>475>600极限偏差±1±0.5V带轮按腹板(轮辐)结构的不同分为以下几种型式:

(1)实心带轮:用于尺寸较小的带轮(dd≤(2.5~3)d时),如图7-6a。

(2)腹板带轮:用于中小尺寸的带轮(dd≤300mm时),如图7-6b。

(3)孔板带轮:用于尺寸较大的带轮((dd-d)>100mm时),如图7-6c。

(4)椭圆轮辐带轮:用于尺寸大的带轮(dd>500mm时),如图7-6d。(a)(b)(c)(d)图7-6带轮结构类型根据设计结果,可以得出结论:小带轮选择实心带轮,如图(a),大带轮选择腹板带轮如图(b)4.9计算转速的计算(1)主轴的计算转速nj,由公式n=n得,主轴的计算转速nj=300r/min,取300r/min。(2).传动轴的计算转速轴3=600r/min轴2=950r/min,轴1=750r/min。(2)确定各传动轴的计算转速。若经传动副Z/Z传动主轴,则只有600r/min传递全功率;若经传动副Z/Z传动主轴,全部传递全功率,其中300r/min是传递全功率的最低转速,故其计算转速nⅡj=950r/min;Ⅰ轴有1级转速,且都传递全功率,所以其计算转速nⅠj=300r/min。各计算转速入表3-1。表3-1各轴计算转速轴号Ⅰ轴Ⅱ轴Ⅲ轴计算转速r/min750950600(3)确定齿轮副的计算转速。齿轮Z装在主轴上其中只有300r/min传递全功率,故Zj=300r/min。依次可以得出其余齿轮的计算转速,如表3-2。表3-2齿轮副计算转速序号ZZZZZn7509506006003004.10齿轮模数计算及验算(1)模数计算。一般同一变速组内的齿轮取同一模数,选取负荷最重的小齿轮,按简化的接触疲劳强度公式进行计算,即mj=16338可得各组的模数,如表3-3所示。根据和计算齿轮模数,根据其中较大值取相近的标准模数:=16338=16338mm——齿轮的最低转速r/min;——顶定的齿轮工作期限,中型机床推存:=15~20——转速变化系数;——功率利用系数;——材料强化系数。——(寿命系数)的极值齿轮等转动件在接取和弯曲交边载荷下的疲劳曲线指数m和基准顺环次数C0——工作情况系数。中等中级的主运动:——动载荷系数;——齿向载荷分布系数;——齿形系数;根据弯曲疲劳计算齿轮模数公式为:式中:N——计算齿轮转动递的额定功率N=ŋ——计算齿轮(小齿轮)的计算转速r/min——齿宽系数,Z1——计算齿轮的齿数,一般取转动中最小齿轮的齿数:——大齿轮与小齿轮的齿数比,=;(+)用于外啮合,(-)号用于内啮合:命系数;:工作期限,=;==3.49==1.8=0.84=0.58=0.90=0.55=0.72=3.490.840.580.55=0.94=1.80.840.900.72=0.99时,取=,当<时,取=;==0.85=1.5;=1.2=1=0.378许用弯曲应力,接触应力,()=354=17506级材料的直齿轮材料选;20热处理S-C59 =16338mm=16338=2.6mm=275mm=275=2.2mm根据标准齿轮模数系数选用模数为:基本组齿轮模数为3.5,第一扩大组齿轮模数m=2.5,第二扩大组齿轮模数m=3.5;表3-3模数组号基本组第一扩大组第二扩大组模数mm(2)基本组齿轮计算。基本组齿轮几何尺寸见下表齿轮Z1Z1`Z2Z2`齿数21333024分度圆直径73.5115.510584齿顶圆直径80.5122.511291齿根圆直径64.75106.7596.2575.25齿宽20202020按基本组最小齿轮计算。小齿轮用40Cr,调质处理,硬度241HB~206HB,平均取260HB,大齿轮用45钢,调质处理,硬度229HB~206HB,平均取240HB。计算如下:①齿面接触疲劳强度计算:接触应力验算公式为弯曲应力验算公式为:式中N传递的额定功率(kW),这里取N为电动机功率,N=5kW;计算转速(r/min).=300(r/min);m初算的齿轮模数(mm),m=3.5(mm);B齿宽(mm);B=20(mm);z小齿轮齿数;z=21;u小齿轮齿数与大齿轮齿数之比,u=1.26;寿命系数;=工作期限系数;T齿轮工作期限,这里取T=15000h.;齿轮的最低转速(r/min),=500(r/min)基准循环次数,接触载荷取=,弯曲载荷取=m疲劳曲线指数,接触载荷取m=3;弯曲载荷取m=6;转速变化系数,查【5】2上,取=0.60功率利用系数,查【5】2上,取=0.78材料强化系数,查【5】2上,=0.60工作状况系数,取=1.1动载荷系数,查【5】2上,取=1齿向载荷分布系数,查【5】2上,=1Y齿形系数,查【5】2上,Y=0.386;许用接触应力(MPa),查【4】,表4-7,取=650Mpa;许用弯曲应力(MPa),查【4】,表4-7,取=275Mpa;根据上述公式,可求得及查取值可求得:=635Mpa=78Mpa(3)第一扩大组齿轮计算。扩大组齿轮几何尺寸见下表齿轮Z3Z3`Z4Z4`Z5Z5`齿数404035453149分度圆直径10010087.5112.577.5122.5齿顶圆直径10510592.5117.582.5127.5齿根圆直径93.7593.7581.25106.2571.25116.25齿宽202020202020(4)第二扩大组齿轮计算。扩大组齿轮几何尺寸见下表齿轮Z6Z6`Z7Z7`齿数33666633分度圆直径115.5231231115.5齿顶圆直径122.5238238122.5齿根圆直径106.75222.25222.25106.75齿宽20202020按扩大组最小齿轮计算。小齿轮用40Cr,调质处理,硬度241HB~206HB,平均取260HB,大齿轮用45钢,调质处理,硬度229HB~206HB,平均取240HB。同理根据基本组的计算,查文献【6】,可得=0.62,=0.77,=0.60,=1.1,=1,=1,m=3.5,=355;可求得:=619Mpa=135Mpa4.11传动轴最小轴径的初定传动轴直径按扭转刚度用下式计算:d=1.64(mm)或d=91(mm)式中d传动轴直径(mm)Tn该轴传递的额定扭矩(N*mm)T=9550000;N该轴传递的功率(KW)该轴的计算转速该轴每米长度的允许扭转角,==。各轴最小轴径如表3-3。表3-3最小轴径轴号Ⅰ轴Ⅱ轴最小轴径mm35404.12传动轴的直径估算传动轴除应满足强度要求外,还应满足刚度的要求,强度要求保证轴在反复载荷和扭载荷作用下不发生疲劳破坏。机床主传动系统精度要求较高,不允许有较大变形。因此疲劳强度一般不失是主要矛盾,除了载荷很大的情况外,可以不必验算轴的强度。刚度要求保证轴在载荷下不至发生过大的变形。因此,必须保证传动轴有足够的刚度。4.12.1确定各轴转速⑴、确定主轴计算转速:计算转速是传动件能传递全部功率的最低转速。各传动件的计算转速可以从转速图上,按主轴的计算转速和相应的传动关系确定。根据【1】表3-10,主轴的计算转速为(2.3)4.12.2传动轴直径的估算:确定各轴最小直径根据【5】公式(7-1),,并查【5】表7-13得到取1.①Ⅰ轴的直径:取②Ⅱ轴的直径:取③Ⅲ轴的直径:取其中:P-电动机额定功率(kW);-从电机到该传动轴之间传动件的传动效率的乘积;-该传动轴的计算转速();-传动轴允许的扭转角()。当轴上有键槽时,d值应相应增大4~5%;当轴为花键轴时,可将估算的d值减小7%为花键轴的小径;空心轴时,d需乘以计算系数b,b值见【5】表7-12。Ⅰ和Ⅳ为由键槽并且轴Ⅳ为空心轴,Ⅱ和Ⅲ为花键轴。根据以上原则各轴的直径取值:,和在后文给定,轴采用光轴,轴和轴因为要安装滑移齿轮所以都采用花键轴。因为矩形花键定心精度高,定心稳定性好,能用磨削的方法消除热处理变形,定心直径尺寸公差和位置公差都能获得较高的精度,故我采用矩形花键连接。按规定,矩形花键的定心方式为小径定心。查【15】表5-3-30的矩形花键的基本尺寸系列,轴花键轴的规格;轴花键轴的规格。4.12.3键的选择查【4】表6-1选择轴上的键,根据轴的直径,键的尺寸选择,键的长度L取22。主轴处键的选择同上,键的尺寸为,键的长度L取100。4.13传动轴的校核需要验算传动轴薄弱环节处的倾角荷挠度。验算倾角时,若支撑类型相同则只需验算支反力最大支撑处倾角;当此倾角小于安装齿轮处规定的许用值时,则齿轮处倾角不必验算。验算挠度时,要求验算受力最大的齿轮处,但通常可验算传动轴中点处挠度(误差<%3).当轴的各段直径相差不大,计算精度要求不高时,可看做等直径,采用平均直径进行计算,计算花键轴传动轴一般只验算弯曲刚度,花键轴还应进行键侧挤压验算。弯曲刚度验算;的刚度时可采用平均直径或当量直径。一般将轴化为集中载荷下的简支梁,其挠度和倾角计算公式见【5】表7-15.分别求出各载荷作用下所产生的挠度和倾角,然后叠加,注意方向符号,在同一平面上进行代数叠加,不在同一平面上进行向量叠加。4.13.1传动轴的校核①Ⅰ轴的校核:通过受力分析,在一轴的三对啮合齿轮副中,中间的两对齿轮对Ⅰ轴中点处的挠度影响最大,所以,选择中间齿轮啮合来进行校核最大挠度:查【1】表3-12许用挠度;。②Ⅱ轴、Ⅲ轴的校核同上。4.13.2键的校核键和轴的材料都是钢,由【4】表6-2查的许用挤压应力,取其中间值,。键的工作长度,键与轮榖键槽的接触高度。由【4】式(6-1)可得可见连接的挤压强度足够了,键的标记为:4.14摩擦离合器的选择和计算片式摩擦离合器目前在机床中应用广泛,因为它可以在运转中接通或脱开,具有结合平稳、没有冲击、结构紧凑的特点,部分零件已经标准化,多用于机床主传动。按扭矩选择,即:根据【15】和【14】表6-3-20,①计算转矩,查【15】表6-3-21得∴②摩擦盘工作面的平均直径式中d为轴的直径。③摩擦盘工作面的外直径④摩擦盘工作面的内直径⑤摩擦盘宽度b⑥摩擦面对数m,查【15】表6-3-17,摩擦副材料为淬火钢,对偶材料为淬火钢,摩擦因数取0.08,许用压强取,许用温度<120℃.∴m圆整为7.∴摩擦面片数z=7+1=8.⑦摩擦片脱开时所需的间隙,因为采用湿式所以⑧许用传递转矩因为⑨压紧力Q⑩摩擦面压强p根据【14】表22.7-7选用带滚动轴承的多片双联摩擦离合器,因为安装在箱内,所以采取湿式。结构形式见【14】表22.7-7图(a)。表5.2特征参数图号许用转距重量/kg转动惯量/接合力/N脱开力/N内部外部图a1204.70.00350.0050170100表5.3主要尺寸图号许用转矩DABcEFG闭式开式图a1201832-1081001832604570表5.4主要尺寸图号HJLRSa图a85475181152656435-1020114.15轴承的选用与校核4.15.1各轴轴承的选用①主轴前支承:NN3022K;中支承:NN3020K;后支撑N219E②Ⅰ轴离合器及齿轮处支承均用:6206;带轮处支承:6210③Ⅱ轴前支承:30207;中支承:NN3009;后支承:30207④Ⅲ轴前支承:30208;后支承:302084.15.2各轴轴承的校核⑴、Ⅰ轴轴承的校核Ⅰ轴选用的是深沟球轴承6206,其基本额定负荷为19.5KN,由于该轴的转速是定值,所以齿轮越小越靠近轴承,对轴承的要求越高。根据设计要求,应该对Ⅰ轴未端的滚子轴承进行校核。①齿轮的直径②Ⅰ轴传递的转矩∴③齿轮受力根据受力分析和受力图可以得出轴承的径向力为:在水平面:在水平面:∴④因轴承在运转中有中等冲击载荷,又由于不受轴向力,【4】表13-6查得载荷系数,取,则有:⑤轴承的寿命计算:所以按轴承的受力大小计算寿命故该轴承6206能满足要求。⑵、其他轴的轴承校核同上,均符合要求。4.16主轴组件设计主轴的结构储存应满足使用要求和结构要求,并能保证主轴组件具有较好的工作性能。主轴结构尺寸的影响因素比较复杂,目前尚难于用计算法准确定出。通常,根据使用要求和结构要求,进行同型号筒规格机床的类比分析,先初步选定尺寸,然后通过结构设计确定下来,最后在进行必要的验算或试验,如不能满足要求可重新修改尺寸,直到满意为直。主轴上的结构尺寸虽然很多,但起决定作用的尺寸是:外径D、孔径d、悬伸量a和支撑跨距L。4.17主轴的基本尺寸确定4.17.1外径尺寸D主轴的外径尺寸,关键是主轴前轴颈的(前支撑处)的直径。选定后,其他部位的外径可随之而定。一般是通过筒规格的机床类比分析加以确定。320mm车床,P=7.5KW查【1】表3-13,前轴颈应,初选,后轴颈取.4.17.2主轴孔径d中型卧式车床的主轴孔径,已由d=48mm,增大到d=60-80mm,当主轴外径一定时,增大孔径受到一下条件的限制,1、结构限制;对于轴径尺寸由前向后递减的主轴,应特别注意主轴后轴颈处的壁厚不允许过薄,对于中型机床的主轴,后轴颈的直径与孔径之差不要小于,主轴尾端最薄处的直径不要小于。2、刚度限制;孔径增大会削弱主轴的刚度,由材料力学知,主轴轴端部的刚度与截面惯性矩成正比,即:式中:据上式可得出主轴孔径对偶刚度影响的,有图可见,当时,,说明空心主轴的刚度降低较小。当时,,空心主轴刚度降低了24%,因此为了避免过多削弱主轴的刚度,一般取。主轴孔径d确定后,可根据主轴的使用及加工要求选择锥孔的锥度。锥孔仅用于定心时,则锥孔应大些,若锥孔除用于定心,还要求自锁,借以传递转矩时,锥度应小些,我这里选用莫氏六号锥孔。初步设定主轴孔径d=60mm,主轴孔径与外径比为0.6。4.17.3主轴悬伸量a主轴悬伸量的大小往往收结构限制,主要取决于主轴端部的结构形式及尺寸、刀具或夹具的安装方式、前轴承的类型及配置、润滑与密封装置的结构尺寸等。主轴设计时,在满足结构的前提下,应最大限度的缩短主轴悬伸量a。根据结构,定悬伸长度。4.17.4支撑跨距L支撑跨距L,当前,多数机床的主轴采用前后两个支撑,结构简单,制造、装配方便,容易保证精度,但是,由于两支撑主轴的最佳支距一般较短,结构设计难于实现,故采用三支撑结构。如图所示,三支撑主轴的前中支距,对主轴组件刚度和抗震性的影响,要比前后支距地影响大得多,因此,需要合理确定。为了使主轴组件获得很高的刚度可抗震性,前中之距可按两支撑主轴的最佳只距来选取。由于三支撑的前后支距对主轴组件的性能影响较小,可根据结构情况适当确定。如果为了提高主轴的工作平稳性,前后支距可适当加大,如取。采用三支撑结构时,一般不应该把三个支撑处的轴承同时预紧,否则因箱孔及有关零件的制造误差,会造成无法装配或影响正常运作。因此为了保证主轴组件的刚度和旋转精度,在三支撑中,其中两个支撑需要预紧,称为紧支撑;另外一个支撑必须具有较大的间隙,即处于“浮动”状态,称为松支撑,显然,其中一个紧支撑必须是前支撑,否则前支撑即使存有微小间隙,也会使主轴组件的动态特性大为降低。试验表明,前中支撑为紧支撑、后支撑位松支撑,要比前后支撑位紧支撑、中支撑为松支撑的结构静态特性显著提高。4.17.5主轴最佳跨距的确定⑴、考虑机械效率,主轴最大输出转距.床身上最大加工直径约为最大回转直径的50到60%,即加工工件直径取为160mm,则半径为0.08.、计算切削力前后支撑力分别设为,.⑶、轴承刚度的计算根据【20】式(6-1)有:查【20】表6-11得轴承根子有效长度、球数和列数:再带入刚度公式:;⑷、主轴当量直径;⑸、主轴惯性矩;⑹、计算最佳跨距设:查【5】(3-14);式中∴∴式中:4.18主轴刚度验算机床在切削加工过程中,主轴的负荷较重,而允许的变形由很小,因此决定主轴结构尺寸的主要因素是它的变形大小。对于普通机床的主轴,一般只进行刚度验算。通常能满足刚度要求的主轴,也能满足强度要求。只有重载荷的机床的主轴才进行强度验算。对于高速主轴,还要进行临界转速的验算,以免发生共振。一弯曲变形为主的机床主轴(如车床、铣床),需要进行弯曲刚度验算,以扭转变形为主的机床(如钻床),需要进行扭转刚度验算。当前主轴组件刚度验算方法较多,没能统一,还属近似计算,刚度的允许值也未做规定。考虑动态因素的计算方法,如根据部产生切削颤动条件来确定主轴组件刚度,计算较为复杂。现在仍多用静态计算法,计算简单,也较适用。主轴弯曲刚度的验算;验算内容有两项:其一,验算主轴前支撑处的变形转角,是否满足轴承正常工作的要求;其二,验算主轴悬伸端处的变形位移y,是否满足加工精度的要求。对于粗加工机床需要验算、y值;对于精加工或半精加工机床值需验算y值;对于可进行粗加工由能进行半精的机床(如卧式车床),需要验算值,同时还需要按不同加工条件验算y值。支撑主轴组件的刚度验算,可按两支撑结构近似计算。如前后支撑为紧支撑、中间支撑位松支撑,可舍弃中间支撑不计(因轴承间隙较大,主要起阻尼作用,对刚度影响较小);若前中支撑位紧支撑、后支撑为松支撑时,可将前中支距当做两支撑的之距计算,中后支撑段主轴不计。主轴前支撑转角的验算机床粗加工时,主轴的变形最大,主轴前支撑处的转角有可能超过允许值,故应验算此处的转角。因主轴中(后)支撑的变形一般较小,故可不必计算。主轴在某一平面内的受力情况如图在近似计算中可不计轴承变形的影响,则该平面内主轴前支撑处的转角用下式计算;切削力的作用点到主轴前支承支承的距离S=a+W,对于普通车床,W=0.4H,(H是车床中心高,设H=200mm)。则:当量切削力的计算:主轴惯性矩;式中:∴∵∴主轴前支撑转角满足要求。第5章结构设计5.1结构设计的内容、技术要求和方案设计主轴变速箱的结构包括传动件(传动轴、轴承、带轮、齿轮、离合器和制动器等)、主轴组件、操纵机构、润滑密封系统和箱体及其联结件的结构设计与布置,用一张展开图和若干张横截面图表示。主轴变速箱是机床的重要部件。设计时除考虑一般机械传动的有关要求外,着重考虑以下几个方面的问题:精度方面的要求,刚度和抗震性的要求,传动效率要求,主轴前轴承处温度和温升的控制,结构工艺性,操作方便、安全、可靠原则,遵循标准化和通用化的原则。主轴变速箱结构设计时整个机床设计的重点,由于结构复杂,设计中不可避免要经过反复思考和多次修改。在正式画图前应该先画草图。目的是:布置传动件及选择结构方案。检验传动设计的结果中有无干涉、碰撞或其他不合理的情况,以便及时改正。确定传动轴的支承跨距、齿轮在轴上的位置以及各轴的相对位置,以确定各轴的受力点和受力方向,为轴和轴承的验算提供必要的数据。5.2展开图及其布置展开图就是按照传动轴传递运动的先后顺序,假想将各轴沿其轴线剖开并将这些剖切面平整展开在同一个平面上。=1\*ROMANI轴上装的摩擦离合器和变速齿轮。有两种布置方案,一是将两级变速齿轮和离合器做成一体。齿轮的直径受到离合器内径的约束,齿根圆的直径必须大于离合器的外径,否则齿轮无法加工。这样轴的间距加大。另一种布置方案是离合器的左右部分分别装在同轴线的轴上,左边部分接通,得到一级反向转动,右边接通得到三级正向转动。这种齿轮尺寸小但轴向尺寸大。我们采用第二种方案,通过空心轴中的拉杆来操纵离合器的结构。总布置时需要考虑制动器的位置。制动器可以布置在背轮轴上也可以放在其他轴上。制动器不要放在转速太低轴上,以免制动扭矩太大,使制动器尺寸增大。齿轮在轴上布置很重要,关系到变速箱的轴向尺寸,减少轴向尺寸有利于提高刚度和减小体积。5.3=1\*ROMANI轴(输入轴)的设计将运动带入变速箱的带轮一般都安装在轴端,轴变形较大,结构上应注意加强轴的刚度或使轴部受带轮的拉力(采用卸荷装置)。=1\*ROMANI轴上装有摩擦离合器,由于组成离合器的零件很多,装配很不方便,一般都是在箱外组装好=1\*ROMANI轴在整体装入箱内。我们采用的卸荷装置一般是把轴承装载法兰盘上,通过法兰盘将带轮的拉力传递到箱壁上。车床上的反转一般用于加工螺纹时退刀。车螺纹时,换向频率较高。实现正反转的变换方案很多,我们采用正反向离合器。正反向的转换在不停车的状态下进行,常采用片式摩擦离合器。由于装在箱内,一般采用湿式。在确定轴向尺寸时,摩擦片不压紧时,应留有0.2~0.4的间隙,间隙应能调整。离合器及其压紧装置中有三点值得注意:摩擦片的轴向定位:由两个带花键孔的圆盘实现。其中一个圆盘装在花键上,另一个装在花键轴上的一个环形沟槽里,并转过一个花键齿,和轴上的花键对正,然后用螺钉把错开的两个圆盘连接在一起。这样就限制了轴向和周向的两个自由度,起了定位作用。摩擦片的压紧由加力环的轴向移动实现,在轴系上形成了弹性力的封闭系统,不增加轴承轴向复合。结构设计时应使加力环推动摆杆和钢球的运动是不可逆的,即操纵力撤消后,有自锁作用。=1\*ROMANI轴上装有摩擦离合器,两端的齿轮是空套在轴上,当离合器接通时才和轴一起转动。但脱开的另一端齿轮,与轴回转方向是相反的,二者的相对转速很高(约为两倍左右)。结构设计时应考虑这点。齿轮与轴之间的轴承可以用滚动轴承也可以用滑动轴承。滑动轴承在一些性能和维修上不如滚动轴承,但它的径向尺寸小。空套齿轮需要有轴向定位,轴承需要润滑。5.4齿轮块设计齿轮是变速箱中的重要元件。齿轮同时啮合的齿数是周期性变化的。也就是说,作用在一个齿轮上的载荷是变化的。同时由于齿轮制造及安装误差等,不可避免要产生动载荷而引起振动和噪音,常成为变速箱的主要噪声源,并影响主轴回转均匀性。在齿轮块设计时,应充分考虑这些问题。齿轮块的结构形式很多,取决于下列有关因素:是固定齿轮还是滑移齿轮;移动滑移齿轮的方法;齿轮精度和加工方法;变速箱中齿轮用于传递动力和运动。它的精度选择主要取决于圆周速度。采用同一精度时,圆周速度越高,振动和噪声越大,根据实际结果得知,圆周速度会增加一倍,噪声约增大6dB。工作平稳性和接触误差对振动和噪声的影响比运动误差要大,所以这两项精度应选高一级。为了控制噪声,机床上主传动齿轮都要选用较高的精度。大都是用7—6—6,圆周速度很低的,才选8—7—7。如果噪声要求很严,或一些关键齿轮,就应选6—5—5。当精度从7—6—6提高到6—5—5时,制造费用将显著提高。不同精度等级的齿轮,要采用不同的加工方法,对结构要求也有所不同。8级精度齿轮,一般滚齿或插齿就可以达到。7级精度齿轮,用较高精度滚齿机或插齿机可以达到。但淬火后,由于变形,精度将下降。因此,需要淬火的7级齿轮一般滚(插)后要剃齿,使精度高于7,或者淬火后在衍齿。6级精度的齿轮,用精密滚齿机可以达到。淬火齿轮,必须磨齿才能达到6级。机床主轴变速箱中齿轮齿部一般都需要淬火。滑移齿轮进出啮合的一端要圆齿,有规定的形状和尺寸。圆齿和倒角性质不同,加工方法和画法也不一样,应予注意。选择齿轮块的结构要考虑毛坯形式(棒料、自由锻或模锻)和机械加工时的安装和定位基面。尽可能做到省工、省料又易于保证精度。齿轮磨齿时,要求有较大的空刀(砂轮)距离,因此多联齿轮不便于做成整体的,一般都做成组合的齿轮块。有时为了缩短轴向尺寸,也有用组合齿轮的。要保证正确啮合,齿轮在轴上的位置应该可靠。滑移齿轮在轴向位置由操纵机构中的定位槽、定位孔或其他方式保证,一般在装配时最后调整确定。5.5传动轴的设计机床传动轴,广泛采用滚动轴承作支撑。轴上要安装齿轮、离合器和制动器等。传动轴应保证这些传动件或机构能正常工作。首先传动轴应有足够的强度、刚度。如挠度和倾角过大,将使齿轮啮合不良,轴承工作条件恶化,使振动、噪声、空载功率、磨损和发热增大;两轴中心距误差和轴芯线间的平行度等装配及加工误差也会引起上述问题。传动轴可以是光轴也可以是花键轴。成批生产中,有专门加工花键的铣床和磨床,工艺上并无困难。所以装滑移齿轮的轴都采用花键轴,不装滑移齿轮的轴也常采用花键轴。花键轴承载能力高,加工和装配也比带单键的光轴方便。轴的部分长度上的花键,在终端有一段不是全高,不能和花键空配合。这是加工时的过滤部分。一般尺寸花键的滚刀直径为65~85。机床传动轴常采用的滚动轴承有球轴承和滚锥轴承。在温升、空载功率和噪声等方面,球轴承都比滚锥轴承优越。而且滚锥轴承对轴的刚度、支撑孔的加工精度要求都比较高。因此球轴承用的更多。但是滚锥轴承内外圈可以分开,装配方便,间隙容易调整。所以有时在没有轴向力时,也常采用这种轴承。选择轴承的型号和尺寸,首先取决于承载能力,但也要考虑其他结构条件。同一轴心线的箱体支撑直径安排要充分考虑镗孔工艺。成批生产中,广泛采用定径镗刀和可调镗刀头。在箱外调整好镗刀尺寸,可以提高生产率和加工精度。还常采用同一镗刀杆安装多刀同时加工几个同心孔的工艺。下面分析几种镗孔方式:对于支撑跨距长的箱体孔,要从两边同时进行加工;支撑跨距比较短的,可以从一边(丛大孔方面进刀)伸进镗杆,同时加工各孔;对中间孔径比两端大的箱体,镗中间孔必须在箱内调刀,设计时应尽可能避免。既要满足承载能力的要求,又要符合孔加工工艺,可以用轻、中或重系列轴承来达到支撑孔直径的安排要求。两孔间的最小壁厚,不得小于5~10,以免加工时孔变形。花键轴两端装轴承的轴颈尺寸至少有一个应小于花键的内径。一般传动轴上轴承选用级精度。传动轴必须在箱体内保持准确位置,才能保证装在轴上各传动件的位置正确性,不论轴是否转动,是否受轴向力,都必须有轴向定位。对受轴向力的轴,其轴向定位就更重要。回转的轴向定位(包括轴承在轴上定位和在箱体孔中定位)在选择定位方式时应注意:1.轴的长度。长轴要考虑热伸长的问题,宜由一端定位。2.轴承的间隙是否需要调整。3.整个轴的轴向位置是否需要调整。4.在有轴向载荷的情况下不宜采用弹簧卡圈。5.加工和装配的工艺性等。5.6主轴组件设计 主轴组件结构复杂,技术要求高。安装工件(车床)或者刀具(铣床、钻床等)的主轴参予切削成形运动,因此它的精度和性能直接影响加工质量(加工精度和表面粗糙度),设计时主要围绕着保证精度、刚度和抗振性,减少温升和热变形等几个方面考虑。5.6.1各部分尺寸的选择主轴形状与各部分尺寸不仅和强度、刚度有关,而且涉及多方面的因素。内孔直径车床主轴由于要通过棒料,安装自动卡盘的操纵机构及通过卸顶尖的顶杆,必须是空心轴。为了扩大使用范围,加大可加工棒料直径,车床主轴内孔直径有增大的趋势。轴颈直径前支撑的直径是主轴上一主要的尺寸,设计时,一般先估算或拟定一个尺寸,结构确定后再进行核算。前锥孔直径前锥孔用来装顶尖或其他工具锥柄,要求能自锁,目前采用莫氏六号锥孔。支撑跨距及悬伸长度为了提高刚度,应尽量缩短主轴的外伸长度。选择适当的支撑跨距,一般推荐取:=2~3.5,跨距小时,轴承变形对轴端变形的影响大。所以,轴承刚度小时,应选大值,轴刚度差时,则取小值。跨距的大小,很大程度上受其他结构的限制,常常不能满足以上要求。安排结构时力求接近上述要求。5.6.2主轴材料和热处理在主轴结构形状和尺寸一定的条件下,材料的弹性模量E越大,主轴的刚度也越高,由于钢材的E值较大,故一般采用钢质主轴,一般机床的主轴选用价格便宜、性能良好的45号钢。提高主轴有关表面硬度,增加耐磨性,在长期使用中不至于丧失精度,这是对主轴热处理的根本要求。机床主轴都在一定部位上承受着不同程度的摩擦,主轴与滚动轴承配合使用时,轴颈表面具有适当的硬度可改善装配工艺并保证装配精度,通常硬度为HRC40-50即可满足要求。一般机床的主轴,淬火时要求无裂纹,硬度均匀;淬硬层深度不小于1mm,最好1.5-2mm,使精磨后仍能保留一点深度的淬硬层,主轴热处理后变形要小。螺纹表面一般不淬火;淬火部位的空刀槽不能过深,台阶交接处应该倒角;渗氮主轴的锐边、棱角必须倒圆R>0.5mm,可避免渗氮层穿透剥落。5.6.3主轴轴承1)轴承类型选择主轴前轴承有两种常用的类型:双列短圆柱滚子轴承。承载能力大,可同时承受径向力和轴向力,结构比较简单,但允许的极限转速低一些。与双列短圆柱滚子轴承配套使用承受轴向力的轴承有三种:600角双向推力向心球轴承。是一种新型轴承,在近年生产的机床上广泛采用。具有承载能力大,允许极限转速高的特点。外径比同规格的双列圆柱滚子轴承小一些。在使用中,这种轴承不承受径向力。推力球轴承。承受轴向力的能力最高,但允许的极限转速低,容易发热。向心推力球轴承。允许的极限转速高,但承载能力低,主要用于高速轻载的机床。2)轴承的配置大多数机床主轴采用两个支撑,结构简单,制造方便,但为了提高主轴刚度也有用三个支撑的了。三支撑结构要求箱体上三支撑孔具有良好的同心度,否则温升和空载功率增大,效果不一定好。三孔同心在工艺上难度较大,可以用两个支撑的主要支撑,第三个为辅助支撑。辅助支撑轴承(中间支撑或后支撑)保持比较大的游隙(约0.03~0.07),只有在载荷比较大、轴产生弯曲变形时,辅助支撑轴承才起作用。轴承配置时,除选择轴承的类型不同外,推力轴承的布置是主要差别。推力轴承布置在前轴承、后轴承还是分别布置在前、后轴承,影响着温升后轴的伸长方向以及结构的负责程度,应根据机床的实际要求确定。在配置轴承时,应注意以下几点:每个支撑点都要能承受经向力。两个方向的轴向力应分别有相应的轴承承受。径向力和两个方向的轴向力都应传递到箱体上,即负荷都由机床支撑件承受。3)轴承的精度和配合主轴轴承精度要求比一般传动轴高。前轴承的误差对主轴前端的影响最大,所以前轴承的精度一般比后轴承选择高一级。普通精度级机床的主轴,前轴承的选或级,后轴承选或级。选择轴承的精度时,既要考虑机床精度要求,也要考虑经济性。轴承与轴和轴承与箱体孔之间,一般都采用过渡配合。另外轴承的内外环都是薄壁件,轴和孔德形状误差都会反映到轴承滚道上去。如果配合精度选的太低,会降低轴承的回转精度,所以轴和孔的精度应与轴承精度相匹配。轴承间隙的调整为了提高主轴的回转精度和刚度,主轴轴承的间隙应能调整。把轴承调到合适的负间隙,形成一定的预负载,回转精度和刚度都能提高,寿命、噪声和抗震性也有改善。预负载使轴承内产生接触变形,过大的预负载对提高刚度没有明显的小果,而磨损发热量和噪声都会增大,轴承寿命将因此而降低。轴承间隙的调整量,应该能方便而且能准确地控制,但调整机构的结构不能太复杂。双列短圆柱滚子轴承内圈相对外圈可以移动,当内圈向大端轴向移动时,由于1:12的内錐孔,内圈将胀大消除间隙。其他轴承调整也有与主轴轴承相似的问题。特别要注意:调整落幕的端面与螺纹中心线的垂直度,隔套两个端面的平行度都由较高要求,否则,调整时可能将轴承压偏而破坏精度。隔套越长,误差的影响越小。螺母端面对螺纹中心线垂直度、轴上和孔上套简两端平行度等均有严格的精度要求。5.6.4主轴与齿轮的连接齿轮与主轴的连接可以用花键或者平键;轴做成圆柱体,或者锥面(锥度一般取1:15左右)。锥面配合对中性好,但加工较难。平键一般用一个或者两个(相隔180度布置),两国特键不但平衡较好,而且平键高度较低,避免因齿轮键槽太深导致小齿轮轮毂厚度不够的问题。5.6.5润滑与密封主轴转速高,必须保证充分润滑,一般常用单独的油管将油引到轴承处。主轴是两端外伸的轴,防止漏油更为重要而困难。防漏的措施有两种:1)堵——加密封装置防止油外流。主轴转速高,多采用非接触式的密封装置,形式很多,一种轴与轴承盖之间留0.1~0.3的间隙(间隙越小,密封效果越好,但工艺困难)。还有一种是在轴承盖的孔内开一个或几个并列的沟槽(圆弧形或形),效果比上一种好些。在轴上增开了沟槽(矩形或锯齿形),效果又比前两种好。在有大量切屑、灰尘和冷却液的环境中工作时,可采用曲路密封,曲路可做成轴向或径向。径向式的轴承盖要做成剖分式,较为复杂。2)疏导——在适当的地方做出回油路,使油能顺利地流回到油箱。5.6.6其他问题主轴上齿轮应尽可能靠近前轴承,大齿轮更应靠前,这样可以减小主轴的扭转变形。当后支承采用推力轴承时,推力轴承承受着前向后的轴向力,推力轴承紧靠在孔的内端面,所以,内端面需要加工,端面和孔有较高的垂直度要求,否则将影响主轴的回转精度。支承孔如果直接开在箱体上,内端面加工有一定难度。为此,可以加一个杯形套孔解决,套孔单独在车床上加工,保证高的端面与孔德垂直度。主轴的直径主要取决于主轴需要的刚度、结构等。各种牌号钢材的弹性模量基本一样,对刚度影响不大。主轴一般选优质中碳钢即可。精度较高的机床主轴考虑到热处理变形的影响,可以选用或其他合金钢。主轴头部需要淬火,硬度为50~55。其他部分处理后,调整硬度为220~250。第6章设计部分的调节、润滑、维护保养、技术要求及其它1、为了减少车床磨损,延长使用寿命,保证工件加工精度,应对车床的所有摩擦部位进行润滑,并注意日常的维护保养。2、车床的润滑形式常用以下几种,(1)浇油润滑:常用于外露的滑动表面,如导轨面和滑板导轨面等。(2)溅油润滑:常用于密闭的箱体中。如车床的主轴箱中的传动齿轮将箱底的润滑油溅射到箱体上部的油槽中,然后经槽内油孔流到各润滑点进行润滑。(3)油绳导油润滑:常用于进给箱和溜板箱的油池中。利用毛线即吸油又渗油的特性,通过毛线把油引入润滑点,间断地滴油润滑。(4)弹子油杯注油润滑:常用于尾座、中滑板摇手柄及三杠(丝杠、光杠、开关杠)支架的轴承处。定期的用油枪端头油嘴压下油杯上的弹子,将油注入。油嘴撤去,弹子又回复原位,封住注油口,以防尘屑入内。(5)黄油杯润滑:常用于交换齿轮箱挂轮架的中间轴或不经常润滑处。事先在黄油杯中加满钙基润滑脂,需要润滑时,拧进油杯盖,杯中的油脂就被挤压到润滑点中去。(6)油泵输油润滑:常用于转速高、需要大量润滑油连续强制润滑的场合。如主轴箱内许多润滑点就是采用这种方式。3、车床的润滑要求:(1)车床上一般都有润滑系统图,应严格按照润滑系统图进行润滑。(2)换油时,应先将废油放尽,然后用煤油把箱体内冲洗干净后,在注入新机油,注油时应用网过滤,且油面不得低于油标中心线。主轴箱内零件用油泵润滑或飞溅润滑。箱内润滑油一般三个月更换一次。主轴箱体上有一个油标,若发现油标内无油输出,说明油泵输油系统有故障,应立即停车检查断油的原因,并修复。(3)进给箱上部油绳导油润滑的储油槽,每班应给该储油槽加一次油。(4)交换齿轮箱中间齿轮轴轴承是黄油杯润滑,每班一次,7天加一次钙基脂。(5)弹子油杯润滑每班润滑一次。导轨工作前后擦净用油枪加油。5、车床日常保养要求:(1)每天工作后,切断电源,对车床各表面、各罩壳、导轨面、丝杠、光杠、各操纵手柄和操纵杆进行擦拭,做到无油污、无铁屑、车床外表整洁。(2)每周要求保养床身导轨面和中小滑板导轨面及转动部位的整洁、润滑。要求油眼畅通、油标清晰,清洗油绳和护床油毛毡,保持车床外表清洁和工作场地整洁。6、车床一级保养要求:车场运行500小时后,须进行一级保养。其保养以操作工人为主,在维修工人的配合下进行。保养时必须先切断电源,然后按下述顺序和要求进行。(1)主轴箱的保养:a、清洗滤油器、使其无杂物b、检查主轴锁紧螺母有无松动,紧定螺钉是否拧紧。c、调整制动器及离合器摩擦片间隙。(2)交换齿轮箱的保养:a、清洗齿轮、轴套,并在油杯中注入新油脂。b、调整齿轮啮合间隙。c、检查轴套有无晃动现象(3)滑板和刀架的保养:拆洗刀架和中、小滑板,洗净擦干后重新组装,并调整中、小滑板与镶条的间隙。(4)尾座的保养:摇出尾座套筒,并擦净涂油,以保证内外清洁。(5)润滑系统的保养a、清洗冷却泵、滤油器和成液盘。b、保证油路畅通,油孔、油绳、油毡清洁无铁屑c、检查油质,保持良好,油杯齐全,油槽清晰。(6)电器的保养:a、清扫电动机、电气箱上的尘屑。b、电器装置固定整齐。(7)外表的保养:a、清洗车床外表及各罩盖,保持其内外整洁,无锈蚀、无油污。b、清洗三杠c、检查并补齐各螺钉、手柄球、手柄。(8)其他部件的润滑保养总结本课题主要设计C6140普通车床主轴变速箱设计传动系统,考虑到电机的恒功率转速范围与主轴要求的恒功率转速范围不匹配问题,在电机与主轴间增加了一根中间传动轴。机械有级变速系统舍弃液压变速,而采用电磁离合器变速,有利于实现自动操作。但是,由于齿轮传动噪声很大,精确度不够高,并且使主轴箱重量和体积偏大,而在本次设计中有级变速基本采用齿轮传动。因此本课题的设计方案还有进一步改进的空间。随着无级变速电机的性能进一步提高及其价格的下降,中档以上的数控机床已经逐渐舍弃机械有级变速系统,而是直接由电机通过皮带将动力传给主轴,这样数控机床的主轴系统进一步简化,速度进一步提高。特别是电主轴的应用,真正将数控机床带入了超高速时代。参考文献【1】冯辛安主编.机械制造装备设计第2版大连理工大学北京:机械工业出版社,2007.12【2】黄如林主编.切削加工简明实用手册北京:化学工业出版社,2004.7【3】吴宗泽主编.机械设计课程设计手册第三版清华大学北京:高等教育出版社,2006.12【4】濮良贵主编.机械设计第八版北京:高等教育出版社,2007.8【5】金属切削机床设计4【6】范思冲主编.画法几何及机械制图东南大学北京:机械工业出版社,2005.7【7】郑文纬,吴克坚主编.机械原理第七版东南大学机械学学科组北京:高等教育出版社,2006.1【8】减速器实用技术手册编辑委员会编.减速器实用技术手册北京:机械工业出版社,1992【9】戴曙主编.金属切削机床北京:机械工业出版社,2005.1【10】机床设计手册编写组主编.机床设计手册北京:机械工业出版社,1980.8【11】华东纺织工学院、哈尔滨工业大学、天津大学主编.上海:上海科学技术出版社,1979.6【12】哈尔滨工业大学理论力学教研室编.理论力学()第六版北京:高等教育出版社,2006.12【13】刘鸿文主编.材料力学()第四版北京:高等教育出版社,2006.11【14】机械设计手册编委会主编.机械设计手册单行本联轴器、离合器与制动器北京:机械工业出版社,2007.3【15】成大先主编.机械设计手册第四版第二卷北京:化学工业出版社,2003.9【16】曹金榜等主编.机床主轴变速箱设计指导北京:机械工业出版社,1995【17】李洪主编.机械制造工艺金属切削机床设计指导沈阳:东北工学院出版社,1996【18】陈易新编.金属切削机床课程设计指导书北京:机械工业出版社,1993【19】翁世修等编.金属切削机床设计指导上海:上海交通大学出版社,1995【20】方键主编.结构设计北京:化学工业出版社,2006致谢在这里我要感谢那些所有曾经寄予我关心和帮助的人,这篇论文的完成和他们中的任何一位都是分不开的。首先,我要向我的指导老师XX老师致以由衷的感谢和诚挚的敬意,他的指导为我们提供了设计的主题思想,在设计过程中,他在自己的繁忙工作之余指导我们,检查并排除了我们设计过程中的诸多漏洞。无论是理论的运用,还是零部件的设计计算,都给我们解惑答疑,我都有很大的收获。在论文的编写过程中,他给我提出宝贵的意见,并且给与细致的指导,不断地完善和改进。最重要的是XX老师教会我们许多分析、解决问题的方法,这在书本中无法学到的,他的教诲培养了我科学的思维方法和一丝不苟的工作态度,渊博的学识更使我受益匪浅。其次,我要感谢的是我的同伴们——同设计组的所有同学。在整个设计过程中,我们配合的非常默契,遇到不清楚地地方一起讨论、翻阅资料,共同克服困难,出谋划策寻求最简洁最佳的解决方案。正是由于我们的努力,整个设计才能进行的那么顺利。同时我要感谢机房的李老师,他每天按时地为我们开机房的门,为我们提供了很好的上机环境。同时也给与我们很多指导和帮助。再次,我要感谢大学四年所有教过我的老师和我们的辅导员,感谢他们四年来对我的谆谆教诲和无私帮助。还要感谢我们机械所有的同学,正是可爱的你们,我的大学生活才如此的丰富多彩!最后要感谢的,是我的家人,是他们养育我,教我做人做事的道理,同时将这篇论文献给他们。感谢他们在生活上给我的支持和照顾,在学习上给我的关心和鼓励,我才能安心、顺利的完成大学学业。基于C8051F单片机直流电动机反馈控制系统的设计与研究基于单片机的嵌入式Web服务器的研究MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究基于模糊控制的电阻钎焊单片机温度控制系统的研制基于MCS-51系列单片机的通用控制模块的研究HYPERLINK"/d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论