安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析_第1页
安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析_第2页
安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析_第3页
安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析_第4页
安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市江文中学2022-2023学年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列四个命题中,正确的有①两个变量间的相关系数越小,说明两变量间的线性相关程度越低;②命题:“,”的否定:“,”;③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;④若,,,则.A.①③④ B.①④ C.③④ D.②③参考答案:C2.已知函数f(x)=3sin(ωx﹣)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是()A.[﹣3,3] B.[﹣,] C.[﹣,] D.[﹣,3]参考答案:D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数f(x)=3sin(ωx﹣)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同确定ω的值,再由x的范围确定ωx﹣的范围,最后根据正弦函数的图象和性质可得到答案【解答】解:由题意可得ω=2,∵x∈[0,],∴ωx﹣=2x﹣∈[﹣,],由三角函数图象知:f(x)的最小值为3sin(﹣)=﹣,最大值为3sin=3,所以f(x)的取值范围是[﹣,3],故选:D3.对于三次函数(),定义:设是函数的导数,若方程有实数解x0,则称点(x0,f(x0))为函数的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,若函数,则=(

(A)2010

(B)2011

(C)2012

(D)2013参考答案:A令,,则g(x)=h(x)+m(x).

则,令,所以h(x)的对称中心为(,1).设点p(x0,y0)为曲线上任意一点,则点P关于(,1)的对称点P′(1﹣x0,2﹣y0)也在曲线上,∴h(1﹣x0)=2﹣y0,∴h(x0)+h(1﹣x0)=y0+(2﹣y0)=2.∴h()+h()+h()+h()+…+h()=[h()+h()]+[h()+h()]+[h()+h()]+…+[h()+h()]=1005×2=2010.由于函数m(x)=的对称中心为(,0),可得m(x0)+m(1﹣x0)=0.∴m()+m()+m()+m()+…+m()=[m()+m()]+[m()+m()]+[m()+m()]+…+[m()+m()]=1005×0=0.∴g()+g()+g()+g()+…+g()=h()+h()+h()+h()+…+h()+m()+m()+m()+m()+…+m()=2010+0=2010,选A.4.已知椭圆C1与双曲线C2有相同的左右焦点F1、F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1,e2,且=,若∠F1PF2=,则双曲线C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±y=0 D.x±2y=0参考答案:c【考点】K4:椭圆的简单性质.【分析】设椭圆及双曲线的方程,根据椭圆及双曲线的离心率公式及定义,求得a1=3a2,丨PF1丨=a1+a2=4a2,丨PF2丨=a1﹣a2=2a2,利用余弦定理即可求得c2=3a22,b2=a2,根据双曲线的渐近线方程,即可求得答案.【解答】解:设椭圆C1的方程:(a1>b1>0),双曲线C2的方程:(a2>0,b2>0),焦点F1(﹣c,0),F2(c,0),由e1=,e1=,由=,则=,则a1=3a2,由题意的定义:丨PF1丨+丨PF2丨=2a1,丨PF1丨﹣丨PF2丨=2a2,则丨PF1丨=a1+a2=4a2,丨PF2丨=a1﹣a2=2a2,由余弦定理可知:丨F1F2丨2=丨PF1丨2+丨PF1丨2﹣2丨PF1丨丨PF1丨cos∠F1PF2,则(2c)2=(4a2)2+(2a2)2﹣2×4a2×2a2×,c2=3a22,b22=c2﹣a22=2a22,则b2=a2,双曲线的渐近线方程y=±x=±x,即x±y=0,故选:C.5.若存在正实数,对于任意,都有,则称函数在上是有界函数.下列函数:①;

②;

③;

④,其中“在上是有界函数”的序号为(

)A.②③

B.①②③

C.②③④

D.③④参考答案:A略6.已知椭圆的离心率为,是椭圆上一点,是椭圆的左右焦点,为的内切圆圆心,若0,则的值是

A.4

B.3

C.1

D.1

参考答案:D7.下列函数中,最小正周期为的偶函数为(

)(A)

(B)(C)

(D)参考答案:A试题分析:这种问题首先应该把函数化简,,,,这时会发现只有A是偶函数,当然它的最小正周期也是,只能选A.考点:最小正周期,函数的奇偶性.

8.已知且对任意m,n都有⑴=1;⑵;⑶.给出下列三个结论:①②③.其中正确的个数是………………………(

)

A

3个

B

2个

C

1个 D

0个参考答案:A9.展开式中,的系数是A、80B、-80C、40D、-40参考答案:B10.若关于x的方程在区间[-2,2]上仅有一个实根,则实数a的取值范围为(

)A.[-4,0] B.(1,28] C.[-4,0)∪(1,28] D.[-4,0)∪(1,28)参考答案:C【分析】设=,可得函数递增递减区间,由函数在区间上仅有一个零点,列出方程可得的取值范围.【详解】解:设,可得,令,可得,令,可得,可得函数递增区间为,递减区间为,由函数在区间上仅有一个零点,,,若,则,显然不符合题意,故,或,可得或,故选C.【点睛】本题主要考察方程的根与函数的零点的关系,利用导数研究函数的单调性,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.参考答案:略12.过抛物线的焦点F的直线l交C于A,B两点,在点A处的切线与x,y轴分别交于点M,N,若的面积为,则_________________。参考答案:2【分析】设出直线的方程,设出点的坐标,求得过的切线方程,由此求得的坐标,代入三角形的面积公式列方程,解得点的坐标,根据抛物线的定义求得的值.【详解】由题意,焦点,设直线,不妨设为左交点,,则过的切线为,则,所以,解得,则,根据抛物线的定义可得.【点睛】本小题主要考查直线和抛物线的位置关系,考查抛物线的切线方程,考查抛物线的定义,属于中档题.13.函数,关于方程有三个不同实数解,则实数的取值范围为(

)A.

B.

C.

D.参考答案:D略14.已知是所围成的区域内的不同两点,则的最大值是

参考答案:答案:

15.若是偶函数,且当的解集是

.参考答案:(0,2)略16.在平面直角坐标系xOy中,设是半圆:()上一点,直线的倾斜角为45°,过点作轴的垂线,垂足为,过作的平行线交半圆于点,则直线的方程是

.参考答案:17.已知函数的图像如图所示,则 。参考答案:0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,矩形ABCD中,BC=2,AB=1,PA丄平面ABCD,BE//PA,,F为PA的中点.(I)求证:DF//平面PEC(II)若PE=,求平面PEC与平面PAD所成锐二面角的余弦值.参考答案:略19.已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.(1)求椭圆C的方程.(2)已知经过定点M(2,0)且斜率不为0的直线l交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得PM始终平分∠APB?若存在求出P点坐标,若不存在请说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)设椭圆的标准方程为(a>b>0),焦距为2c.由抛物线方程得焦点,可得c.又短轴长为4,可得2b=4,解得b.再利用a2=b2+c2即可得到a.(2)假设在x轴上存在一个定点P(t,0)(t≠2)使得PM始终平分∠APB.设直线l的方程为my=x﹣2,A(x1,y1),B(x2,y2).与椭圆的方程联立化为(9+5m2)y2+20my﹣25=0,得到根与系数的关系,由于PM平分∠APB,利用角平分线的性质可得,经过化简求出t的值即可.【解答】解:(1)设椭圆的标准方程为(a>b>0),焦距为2c.由抛物线方程得焦点,∴c=.又短轴长为4,∴2b=4,解得b=2.∴a2=b2+c2=9.∴椭圆C的方程为.(2)假设在x轴上存在一个定点P(t,0)(t≠2)使得PM始终平分∠APB.设直线l的方程为my=x﹣2,A(x1,y1),B(x2,y2).联立,化为(9+4m2)y2+16my﹣20=0,则,.(*)∵PM平分∠APB,∴,∴,化为,把x1=my1+2,x2=my2+2代入上式得(2﹣t)(y1﹣y2)[2my1y2+(2﹣t)(y1+y2)]=0,∵2﹣t≠0,y1﹣y2≠0,∴2my1y2+(2﹣t)(y1+y2)=0.把(*)代入上式得,化为m(9﹣2t)=0,由于对于任意实数上式都成立,∴t=.因此存在点P满足PM始终平分∠APB.20.如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(l)求证:直线AB是⊙O的切线;(2)若AD=2,且tan∠ACD=,求⊙O的半径r的长.参考答案:考点:与圆有关的比例线段.专题:立体几何.分析:(1)如图所示,连接OC.由AB∥DE,可得,由于OD=OE,可得OA=OB.由于AC=CB,可得OC⊥AB.即可得出直线AB是EO的切线.(2)延长AO交⊙O于点F,连接CF.由(1)可得∠ACD=∠F.由tan∠ACD=,可得tan∠F=.由于△ACD∽△AFC,可得,再利用切割线定理可得:AC2=AD?(AD+2r),即可得出.解答: (1)证明:如图所示,连接OC.∵AB∥DE,∴,∵OD=OE,∴OA=OB.∵AC=CB,∴OC⊥AB.∴直线AB是EO的切线.(2)解:延长AO交⊙O于点F,连接CF.由(1)可得∠ACD=∠F.∵tan∠ACD=,∴tan∠F=.∵△ACD∽△AFC,∴,而AD=2,∴AC=4.由切割线定理可得:AC2=AD?(AD+2r),∴42=2×(2+2r),解得r=3.点评:本题考查了圆的切线的性质、切割线定理、相似三角形的性质、平行线分线段成比例定理,考查了推理能力与计算能力,属于中档题.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论