




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市西湖中学2022年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=()|x|的图象大致为()A. B. C. D.参考答案:C【考点】函数的图象.【分析】判断函数的奇偶性,利用指数函数的特征判断即可.【解答】解:函数y=()|x|是偶函数,当x>0时,函数y=()x的图象是减函数,函数的值域0<y<1,所以函数的图象是.故选:C.2.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于(
)A.90°
B.60°
C.45°
D.30°参考答案:C3.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.1参考答案:C【考点】J9:直线与圆的位置关系.【分析】由题意判断点在圆上,求出P与圆心连线的斜率就是直线ax﹣2y+1=0的斜率,然后求出a的值即可.【解答】解:因为点P(0,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(0,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,所以切点与圆心连线与直线ax﹣2y+1=0平行,所以直线ax﹣2y+1=0的斜率为:,所以a=﹣4.故选:C.【点评】本题考查直线与圆的位置关系,直线与直线的垂直,考查转化思想与计算能力.4.函数f(x)=(m2﹣m﹣1)x是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值()A.恒大于0 B.恒小于0 C.等于0 D.无法判断参考答案:A【考点】幂函数的性质.【专题】函数的性质及应用.【分析】根据题意,求出幂函数f(x)的解析式,利用函数f(x)的奇偶性与单调性,求出f(a)+f(b)>0.【解答】解:根据题意,得f(x)=(m2﹣m﹣1)x是幂函数,∴m2﹣m﹣1=1,解得m=2或m=﹣1;又f(x)在第一象限是增函数,且当m=2时,指数4×29﹣25﹣1=2015>0,满足题意;当m=﹣1时,指数4×(﹣1)9﹣(﹣1)5﹣1=﹣4<0,不满足题意;∴幂函数f(x)=x2015是定义域R上的奇函数,且是增函数;又∵a,b∈R,且a+b>0,∴a>﹣b,又ab<0,不妨设b<0,即a>﹣b>0,∴f(a)>f(﹣b)>0,f(﹣b)=﹣f(b),∴f(a)>﹣f(b),∴f(a)+f(b)>0.故选:A.【点评】本题考查了幂函数的定义与性质的应用问题,也考查了函数的奇偶性与单调性的应用问题,是基础题目.5.函数(是自然底数)的大致图象是
参考答案:C6.已知函数是奇函数且当时是减函数,若f(1)=0,则函数的零点共有()A.4个
B.5个
C.6个
D.7个参考答案:D7.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+4参考答案:A【考点】函数解析式的求解及常用方法.【分析】通过变换替代进行求解【解答】∵f(x+1)=3x+2=3(x+1)﹣1∴f(x)=3x﹣1故答案是:A8.,,所成的角为则(
)A.3
B.
C.
D.参考答案:B略9.设x,y满足约束条件,则的最小值为(
)A.3 B.4 C.5 D.10参考答案:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得,当取到点时得到最小值,即故选B【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法10.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣9参考答案:D【考点】I6:三点共线.【分析】根据三点A、B、C共线?kAB=kAC,即可求出.【解答】解:∵三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,∴kAC=kAB,即,解得b=﹣9.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.幂函数f(x)=xα经过点P(2,4),则f()=
.参考答案:2【考点】幂函数的概念、解析式、定义域、值域.【分析】利用幂函数的性质求解.【解答】解:∵幂函数f(x)=xα经过点P(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f()=()2=2.故答案为:2.12.数列{an}的前n项和Sn=n2+1,则an=
.参考答案:=
略13.已知a的终边与-6900的终边关于Y轴对称,则a=________;已知b的终边与-6900的终边关于原点对称,其中绝对值最小的b=________;参考答案:a=k·360°+1500
β=2100+k·360°其中绝对值最小的b角是K=-1时,β=-150014.已知f(x)是定义在(0,+∞)上的减函数,若f(22++1)<f(32-4+1)成立,则的取值范围是___________.参考答案:解析:∵在(0,∞)上有定义,又;仅当或时,(*);∵在(0,∞)上是减函数,∴,结合(*)知惑.15.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为
。(用分数表示)参考答案:略16.若扇形的面积是1cm2,它的周长是4cm,则扇形圆心角的弧度数为_________.参考答案:2设扇形的半径为R,弧长为l,由已知得解得∴扇形圆心角的弧度数是=2.17.设函数,则的值为
.参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知函数y=(1)判断函数在(1,+∞)区间上的单调性(2)求函数在区间是区间[2,6]上的最大值和最小值参考答案:解:设x1、x2是区间(1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=-==.当x=6时,ymin=.略19.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:AB⊥C1F;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)由BB1⊥平面ABC得AB⊥BB1,又AB⊥BC,故AB⊥平面B1BCC1,所以AB⊥C1F;(2)取AB的中点G,连接EG,FG.则易得四边形EGFC1是平行四边形,故而C1F∥EG,于是C1F∥平面ABE;(3)由勾股定理求出AB,代入棱锥的体积公式计算即可.【解答】(1)证明:∵BB1⊥底面ABC,AB?平面ABC∴BB1⊥AB.又∵AB⊥BC,BC?平面B1BCC1,BB1?平面B1BCC1,BC∩BB1=B,∴AB⊥平面B1BCC1,又∵C1F?平面B1BCC1,∴AB⊥C1F.(2)证明:取AB的中点G,连接EG,FG.∵F,G分别是BC,AB的中点,∴FG∥AC,且FG=AC,∵ACA1C1,E是A1C1的中点,∴EC1=A1C1.∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG.又∵EG?平面ABE,C1F?平面ABE,EG?平面ABE,∴C1F∥平面ABE.(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB==.∴三棱锥E﹣ABC的体积V=S△ABC?AA1=×××1×2=.20.(本小题满分8分)已知三角形ABC的顶点坐标为A(0,3)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程。(2)求中线AM的长。(3)求点C关于直线AB对称点的坐标。参考答案:解:(1)由两点式得AB边所在的直线方程为:=即2x—y+3=0…………2分(2)由中点坐标公式得M(1,1)…………………3分∴|AM|==…………4分(3)设C点关于直线AB的对称点为C′(x′,y′)则CC′⊥AB且线段CC′的中点在直线AB上。即…………………6分解之得x′=
y′=即C′点坐标为(,)……8分21.(本题满分16分)已知函数,,.(1)求函数的值域;(2)若函数的最小正周期为,则当时,求的单调递减区间.参考答案:(1)
--------------------5分
,∴的值域为
--------------7分
(2)∵的最小正周期为,∴,即
∴
∵,∴
∵递减,∴
由,得到,∴单调递减区间为
-------15分22.如图,甲船从A处以每小时30海里的速度沿正北方向航行,乙船在B处沿固定方向匀速航行,B在A北偏西105°方向用与B相距10海里处.当甲船航行20分钟到达C处时,乙船航行到甲船的北偏西120°方向的D处,此时两船相距10海里.(1)求乙船每小时航行多少海里?(2)在C的北偏西30°方向且与C相距海里处有一个暗礁E,周围海里范围内为航行危险区域.问:甲、乙两船按原航向和速度航行有无危险?若有危险,则从有危险开始,经过多少小时后能脱离危险?若无危险,请说明理由.参考答案:【考点】解三角形的实际应用.【分析】(1)连接AD,CD,推断出△ACD是等边三角形,在△ABD中,利用余弦定理求得BD的值,进而求得乙船的速度.(2)建立如图所示的坐标系,危险区域在以E为圆心,r=的圆内,求出E到直线BD的距离,与半径比较,即可得出结论.【解答】解:如图,连接AD,CD,由题意CD=10,AC==10,∠ACD=60°∴△ACD是等边三角形,∴AD=10,∵∠DAB=45°△ABD中,BD==10,∴v=10×3=30海里.答:乙船每小时航行30海里.(2)建立如图所示的坐标系,危险区域在以E为圆心,r=的圆内,直线BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购买插画版权合同范本
- 预防医学知到课后答案智慧树章节测试答案2025年春滨州医学院
- 财务数据分析模板
- 制作安装窗户合同范本
- 2025 网点店铺租赁合同 标准版 模板
- 2024年中山市沙溪镇招聘真题
- 2024年榆林市吴堡县县属国有企业招聘真题
- 2025年高层管理人员劳动合同的认定与合同续签策略
- 2024年龙岩市市属事业单位考试真题
- 2024年雷州市市属事业单位考试真题
- 供电所春季安全大检查方案
- 2024年度医院内镜室检查内容分析报告课件
- 毛泽东思想的形成与发展
- 文化集市体验活动策划
- 细菌性痢疾教学演示课件
- 连铸机扇形段对弧测量方法及保证措施
- 村级巡察培训课件
- 七年级历史下册期中复习资料
- 景观生态规划与设计景观生态学与景观生态原理
- 【完整版】中压燃气管道工程施工组织设计
- 酒店西餐厅物品采购清单
评论
0/150
提交评论