一次函数的图象与性质_第1页
一次函数的图象与性质_第2页
一次函数的图象与性质_第3页
一次函数的图象与性质_第4页
一次函数的图象与性质_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章一次函数4.3一次函数的图象第2课时一次函数的图象与性质正比例函数是特殊的一次函数,正比例函数的图象是一条直线,那么一次函数的图象也是一条直线吗?从表达式上看,正比例函数与一次函数相差什么?如果体现在图象上又会有怎样的关系呢?通过本节课的学习,同学们就会明白了,下面就让我们一起来学习本节课的内容.1知识点一次函数的图象

例1画出一次函数y=-2x+1的图象.解:列表:x…-2-1012…y…531-1-3…描点连线

y

x3021-1-2-3-1-2-312345y=-2x+1一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.体验:在同一坐标系中用两点法画出函数.y=x+1,y=-x+1,y=2x+1y=-2x+1的图象.123456-1-2-3-4-5-6yxo123456-1-2-3-4-5-6y=x+1y=-x+1y=2x+1y=-2x+1两点法:由于两点确定一条直线,因此在平面直角坐标系中画一次函数的图象时,先描出适合关系式的两点,再过这两点作直线即可.通常选取(0,b)和,即与坐标轴相交的两点.

例2在不同的平面坐标系中画出下列一次函数的图象:y=x+1,y=x-1,y=-x+1,y=-x-1,并思考:当k,b取不同的值时,一次函数的图象经过

的象限如何?解:结论:k,b的取值直线y=kx+b经过的象限k>0,b>01、2、3k>0

,b<01、3、4k<0,b>01、2、4k<0,b<02、3、41(中考·湘西州)已知k>0,b<0,则一次函数y=kx-b的大致图象为(

)(中考·成都)一次函数y=2x+1的图象不经过(

)A.第一象限B.第二象限C.第三象限D.第四象限2AD2知识点系数相等的一次函数的位置关系

例3在同一平面直角坐标系中,画出下列函数的图象:(1)y1=2x-1;(2)y2=2x;(3)y3=2x+2.然后观察图象,你能得到什么结论?

导引:(1)可取(0,-1)及(1,1)两点;(2)可取(0,0)及(1,2)两点;(3)可取(0,2)及(1,4)两点,分别作一直线即可得到它们的图象,再通过观察图象,得出结论.解:列表如下:

描点、连线,即可得到它们的图象,如图所示.从图象中我们可以看出:它们是一组互相平行的直线,原因是这组函数的关系式中k的值都是2.结论:一次函数关系式y=kx+b中的k值相等(b值不等)时,其图象是一组互相平行的直线.它们可以通过互相平移得到.x01y1-11x01y324x01y2021.平移法:直线y=kx+b可以看作由直线y=kx平移得到:①当b>0时,把直线y=kx向上平移b个单位得到直线y=kx+b;②当b<0时,把直线y=kx向下平移|b|个单位得到直线y=kx+b.用一句话来表述就是:“上加下减”;上、下是“形”的平移,加、减是“数”的变化.2.直线y=kx+b与坐标轴的交点坐标:(1)与y轴的交点为(0,b);(2)与x轴的交点为.1(中考·遂宁)直线y=2x-4与y轴的交点坐标是(

)A.(4,0)B.(0,4)C.(-4,0)D.(0,-4)(中考·徐州)将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数表达式为(

)A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)2DA3知识点一次函数y=kx+b(k≠0)的性质做一做在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.议一议上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?知识点1.一次函数的增减性(1)当k>0时,直线自左向右上升,y的值随着x

值的增大而增大;当k<0时,直线自左向右下降,y的值随着x

值的增大而减小.(2)k>0⇔y的值随着x值的增大而增大;k<0⇔y的值随着x值的增大而减小.总

结借助函数的图象,运用函数的性质,是解决有关一次函数问题的关键.

(中考·海南)点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1________y2(填“>”“=”或“<”).已知点A(-2,y1)和点B(1,y2)是如图所示的一次函数y=2x+b图象上的两点,则y1与y2的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论