版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.计算的结果是()A.16 B.4 C.2 D.-42.王师傅驾车到某地办事,汽车出发前油箱中有50升油.王师傅的车每小时耗油12升,行驶3小时后,他在一高速公路服务站先停车加油26升,再吃饭、休息,此过程共耗时1小时,然后他继续行驶,下列图象大致反映油箱中剩余油量y(升)与行驶时间t(小时)之间的函数关系的是()A. B.C. D.3.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.9 C.10 D.4+4.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定5.如图,已知,点D、E、F分别是、、的中点,下列表示不正确的是()A. B. C. D.6.下列各组数是勾股数的是()A. B.1,1, C. D.5,12,137.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°8.下列等式不一定成立的是()A. B.C. D.9.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)10.我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A.38001+C.38001+x2=二、填空题(每小题3分,共24分)11.一个矩形在直角坐标平面上的三个顶点的坐标分别是(﹣2,﹣1)、(3,﹣1)、(﹣2,3),那么第四个顶点的坐标是_____.12.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为_____.13.已知方程=2,如果设=y,那么原方程可以变形为关于y的整式方程是_____.14.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.15.若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.16.矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.17.已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________18.如图,某自动感应门的正上方处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时(米),感应门自动打开,则_________米.三、解答题(共66分)19.(10分)解方程:+1=.20.(6分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.21.(6分)分别按下列要求解答:(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.(2)将绕顺时针旋转度得到,画出,则点坐标为__________.(3)在(2)的条件下,求移动的路径长.22.(8分)选用适当的方法解下列方程:(1)(x-2)2-9=0;(2)x(x+4)=x+4.23.(8分)计算和解方程.(1);(2)解方程:.24.(8分)如图,正方形ABCD边长为3,G是CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE,连接BG并延长交DE于H.(1)求证:BH⊥DE;(2)当BH平分DE时,求正方形GCEF的边长.25.(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.(10分)已知一次函数的图象过点,且与一次函数的图象相交于点.(1)求点的坐标和函数的解析式;(2)在平面直角坐标系中画出,的函数图象;(3)结合你所画的函数图象,直接写出不等式的解集.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据算术平方根的定义解答即可.【详解】==1.
故选B.【点睛】本题考查了算术平方根的定义,解题的关键是在于符号的处理.2、D【解析】
找准几个关键点,3小时后的油量、然后加油、吃饭、休息这1小时后油量增多26升、然后油量再下降.【详解】根据题意可得:油量先下降到14升,然后加油,油量上升,加油、吃饭、休息的这一小时,油量不减少,然后开始行驶,油量降低.故选D.【点睛】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.3、D【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴=5,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD−AE=5−2=3,∴CD==,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.【点睛】此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算4、B【解析】
先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.【详解】由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、A【解析】
根据中位线的性质可得DB=EF=AD,且DB∥EF,DE=BF,且DF∥BF,再结合向量的计算规则,分别判断各选项即可.【详解】∵点D、E、F分别是AB、AC、BC的中点∴FE∥BD,且EF=DB=AD同理,DE∥BF,且DE=BFA中,∵未告知AC=AB,∴、无大小关系,且方向也不同,错误;B中,∥,正确;C中,DB=EF,且与方向相反,∴,正确;D中,,正确故选:A【点睛】本题考查中位线定理和向量的简单计算,解题关键是利用中位线定理,得出各边之间的大小和位置关系.6、D【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A.()2+()2≠()2不能构成直角三角形,不是正整数,故不是勾股数.B.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;C.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;D.()2+()2=()2能构成直角三角形,是正整数,故是勾股数.故答案选D【点睛】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.7、D【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【详解】解:延长PF交AB的延长线于点G.在△BGF与△CPF中,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴(直角三角形斜边上的中线等于斜边的一半),∵(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,易证FE=FG,∴∠FGE=∠FEG=55°,∵AG∥CD,∴∠FPC=∠EGF=55°故选:D.【点睛】此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.8、B【解析】
直接利用二次根式的性质分别化简的得出答案.【详解】A.()2=5,正确,不合题意;B.(a≥0,b≥0),故此选项错误,符合题意;C.π﹣3,正确,不合题意;D.,正确,不合题意.故选B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.9、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.10、C【解析】
设2017年到2019年该地区居民年人均收入增长率为x,根据2017年和2019年该地区居民年人均收入,即可得出关于x的一元二次方程.【详解】解:设2017年到2019年该地区居民年人均收入增长率为x,
依题意,得:3800(1+x)2=5000,
故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每小题3分,共24分)11、(3,3)【解析】
因为(-2,-1)、(-2,3)两点横坐标相等,长方形有一边平行于y轴,(-2,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,即可求出第四个顶点的坐标.【详解】解:过(﹣2,3)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,3),即为第四个顶点坐标.故答案为:(3,3).【点睛】此题考查坐标与图形性质,解题关键在于画出图形12、y=2x+1【解析】
根据函数的平移规律,利用口诀上加下减,可得答案.【详解】解:直线y=2x+4经过点(0,4),将直线下平移3个单位,则点(0,4)也向下平移了3个单位,则平移后的直线经过点(0,1),∵平移后的直线与原直线平行,∴平移后的直线设为y=2x+k,∵y=2x+k过点(0,1),代入点(0,1)得k=1,∴新直线为y=2x+1故答案为:y=2x+1【点睛】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.13、3y2+6y﹣1=1.【解析】
根据=y,把原方程变形,再化为整式方程即可.【详解】设=y,原方程变形为:﹣y=2,化为整式方程为:3y2+6y﹣1=1,故答案为3y2+6y﹣1=1.【点睛】本题考查了用换元法解分式方程,掌握整体思想是解题的关键.14、13【解析】
根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【点睛】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.15、2【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:解方程得第三边的边长为2或1.第三边的边长,第三边的边长为1,这个三角形的周长是.故答案为2.【点睛】本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.16、1【解析】
分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知=OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.【详解】∵四边形ABCD是矩形,∴BD=AC=4,∴OA=2.∵,是DO、AD的中点,∴是△AOD的中位线,∴=OA=1.故答案为:1【点睛】此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解17、2或4.【解析】
过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=6,
∴BE=×6÷cos30°=3÷=2,
∴BF1=BF2=BF1+F1F2=2+2=4,
故BF的长为2或4.故答案为:2或4.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.18、1.1【解析】
过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【详解】解:如图,过点D作DE⊥AB于点E,依题意知,BE=CD=1.6米,ED=BC=1.2米,AB=2.1米,则AE=AB−BE=2.1−1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD==1.1(米)故答案是:1.1.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.三、解答题(共66分)19、x=0【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:1+x﹣2=﹣x﹣1,解得:x=0,经检验x=0是分式方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20、【解析】
过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.【详解】解:过P作PH⊥DC于H,交AB于G,如图,则PG⊥AB,∵四边形ABCD为正方形,∴AD=AB=BC=DC=2;∠D=∠C=90°,又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,∴PA=PB=2,∠FPA=∠EPB=90°,∴△PAB为等边三角形,∴∠APB=60°,PG=AB=,∴∠EPF=10°,PH=HG﹣PG=2﹣,∴∠HEP=30°,∴HE=PH=(2﹣)=2﹣3,∴EF=2HE=4﹣6,∴△EPF的面积=FE•PH=(2﹣)(4﹣6)=7﹣1.故答案为7﹣1.【点睛】本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.21、(1)(-4,5);(2)(3,-6);(3)【解析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)利用弧长公式计算即可.【详解】解:(1)△A1B1C1如图所示,点A1的坐标为(-4,5).故答案为(-4,5).(2)△A2B2C2如图所示.C2(3,-6),故答案为(3,-6)(3)点A移动的路径长=【点睛】本题考查作图——旋转变换,轨迹,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、x1=5,x2=-1;(2)x1=1,x2=-4.【解析】
根据一元二次方程的解法依次计算即可【详解】(x-2)2=9x-2=±3∴x1=5x2=-1(2)x(x+4)=x+4若x+4≠0则x=1若x+4=0则x=-4∴x1=1x2=-4【点睛】熟练掌握一元二次方程的解法是解决本题的关键,难度不大23、(1)24;(2)【解析】
(1)根据有理数的混合运算,先算乘方,再算乘除,最后算加减,即可得出结果;(2)先找到公分母去分母,再去括号化简,然后解一元一次方程即可.【详解】解:(1)(2)解方程:解:【点睛】本题考查有理数的混合运算以及解一元一次方程;有理数的混合运算要注意运算顺序,并且一定要注意符号问题,比较容易出错;解一元一次方程有分母的要先去分母,去分母的时候注意给分子添括号,然后再去括号,这样不容易出错.24、(1)见解析;(2)3﹣3【解析】
(1)先由四边形和是正方形证明,得出,再得出;(2)连接BD,解题关键是利用垂直平分线的性质得出BD=BE,再由正方形的性质得出,即可得出结果.【详解】(1)证明:∵四边形是正方形∴,同理:,∴在和中,∴∴在中,∴∴∴(2)连接,如图所示:∵平分,由(1)知:∴∵正方形边长为∴∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗卫生公共管理新挑战
- 农业项目消防工程招标文件
- 农村道路改善工程合同
- 医疗器械储存消毒
- 土地复垦框架协议
- 医疗器械贷后管理策略
- 文化产业园区房屋转让租赁合同
- 电力工程师聘用及培训协议
- 哈尔滨市消防员技能培训
- 劳动合同纠纷解决办法
- 人教版八年级上Unit 6 I'm going to study computer science1 Section A (1a-1c)教案
- 一年级下册数学教案 - 四 牧童-认识图形:《重叠问题》 青岛版
- 家用电器常见认证标志一览汇总(精选.)
- 新概念英语第二册课件Lesson 13 (共24张PPT)
- 五年(2018-2022年)高考全国卷英语试题考点分析
- 绩效考核及薪酬机制和执行情况审计报告模板
- 试验室组织机构图
- 组分模型与pvti模块拟合
- 黑色素瘤诊断与治疗演示课件(PPT 38页)
- 高中数学奥赛辅导:第四讲不定方程
- 02 明渠均匀流断面尺寸设计
评论
0/150
提交评论