版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1032.﹣3的相反数是()A. B. C. D.3.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分4.下列四个实数中,比5小的是()A. B. C. D.5.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.56.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.127.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1 B.2 C.3 D.48.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣29.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分10.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1) B.(1,2) C.(1,3) D.(3,1)二、填空题(共7小题,每小题3分,满分21分)11.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.12.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.13.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只14.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.15.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.16.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.17.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.三、解答题(共7小题,满分69分)18.(10分)计算:÷–+2018019.(5分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.20.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)21.(10分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.(1)观察图,其中,;(2)求第2趟电瓶车距乙地的路程与的函数关系式;(3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有趟电瓶车驶过.22.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.(12分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.24.(14分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、A【解析】
首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【详解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此选项正确;B、∵∴,故此选项错误;C、∵6<<7,∴5<﹣1<6,故此选项错误;D、∵4<<5,∴,故此选项错误;故选A.【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.5、B【解析】
原式利用减法法则变形,计算即可求出值.【详解】,故选:B.【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.6、B【解析】试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质7、C【解析】分析:过O1、O2作直线,以O1O2上一点为圆心作一半径为2的圆,将这个圆从左侧与圆O1、圆O2同时外切的位置(即圆O3)开始向右平移,观察图形,并结合三个圆的半径进行分析即可得到符合要求的圆的个数.详解:如下图,(1)当半径为2的圆同时和圆O1、圆O2外切时,该圆在圆O3的位置;(2)当半径为2的圆和圆O1、圆O2都内切时,该圆在圆O4的位置;(3)当半径为2的圆和圆O1外切,而和圆O2内切时,该圆在圆O5的位置;综上所述,符合要求的半径为2的圆共有3个.故选C.点睛:保持圆O1、圆O2的位置不动,以直线O1O2上一个点为圆心作一个半径为2的圆,观察其从左至右平移过程中与圆O1、圆O2的位置关系,结合三个圆的半径大小即可得到本题所求答案.8、C【解析】
根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9、D【解析】
解:总人数为6÷10%=60(人),则91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故选D.【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.10、D【解析】
过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.二、填空题(共7小题,每小题3分,满分21分)11、41【解析】试题分析:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.考点:1、三角形面积,1、平行四边形12、3或6【解析】
分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.【详解】设AC和BE相交于点O.当P在OA上时,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴BD=AB=9,OB=OD=BD=.则AO=.在直角△OBP中,OP=.则AP=OA-OP-;当P在OC上时,AP=OA+OP=.故答案是:3或6.【点睛】本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.13、1【解析】
求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.【详解】解:
只.
故答案为:1.【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.14、,.【解析】试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.试题解析:如图:当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,当点B的移动距离为时,四边形ABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.15、【解析】
先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.16、【解析】
当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P点纵坐标的最大值为.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.17、1【解析】
设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【详解】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=1.故答案为1.考点:反比例函数图象上点的坐标特征.三、解答题(共7小题,满分69分)18、2【解析】
根据实数的混合运算法则进行计算.【详解】解:原式=-(-1)+1=-+1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.19、(1)证明见解析;(2).【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定20、(1)证明见解析(2)﹣6π【解析】
(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF•tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA•sin30°=3,EA=DA•cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等边三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S阴影=S△AED﹣S扇形COD==.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.21、(1)0.8;2.1;(2);(2)图像见解析,2【解析】
(1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;(2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;(2)结合的图象即可画出的图象,观察图象即可得出答案.【详解】解:(1),故答案为:0.8;2.1.(2)根据题意得:电瓶车的速度为∴.(2)画出函数图象,如图所示.观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.故答案为:2.【点睛】本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.22、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.23、(1)反比例函数的解析式为y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直播平台主播薪资规范
- 娱乐场所安防施工合同
- 旅游信息市场管理办法
- 矿山安全设备测试管理办法
- 森林苗圃施工协议
- 建筑工程彩钢瓦施工合同
- 武汉市计划生育管理妇联行业应用
- 湿地保护中石化施工合同
- 畜牧设备租赁合同转让样本
- 城市绿化项目投标承诺:生态优先
- 2024年个人车位租赁合同参考范文(三篇)
- (完整版)新概念英语第一册单词表(打印版)
- 签申工作准假证明中英文模板
- 员工履历表(标准样本)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
- 新能源发电技术 课件 第一章-新能源发电概述
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 浙江省温州市苍南县2023-2024学年八年级上学期期中考试英语试题
- 2024-2030年中国汽摩配行业运营态势及重点企业发展分析报告
评论
0/150
提交评论